Math Problem Statement

1. Kappaleen x-koordinaatti vaihtelee ajan funktiona liitteenä olevan kuvan mukaisesti. Vastaa seuraaviin kysymyksiin ja perustele vastauksesi lyhyesti. (a) Järjestä pisteet PQRS niiden nopeuden vx mukaan (1p) (b) Milloin vx on positiivinen, milloin yhtäsuuri kuin nolla? (1p) (c) Järjestä pisteet niiden vauhdin mukaan (1p) (d) Missä pisteissä kiihtyvyys on positiivinen? (1p) (e) Missä pisteissä kiihtyvyys on negatiivinen? (1p) (f) Missä pisteissä vauhti kasvaa? (1p)

Solution

Let's analyze the problem from the image and address each part.


The task revolves around interpreting a motion graph, x(t)x(t), showing the x-coordinate as a function of time. Points P,Q,R,SP, Q, R, S are marked on the graph, and the questions are related to velocity, acceleration, and their signs.

Definitions:

  1. Velocity (vxv_x): The slope of the tangent to the curve at a point.

    • Positive slope → vx>0v_x > 0
    • Negative slope → vx<0v_x < 0
    • Horizontal tangent → vx=0v_x = 0
  2. Acceleration: The rate of change of vxv_x (slope of the vxv_x vs. tt graph).

    • a>0a > 0: Slope of vxv_x increasing
    • a<0a < 0: Slope of vxv_x decreasing

(a) Arrange points P,Q,R,SP, Q, R, S based on velocity vxv_x:

  • Point PP: vx<0v_x < 0 (negative slope).
  • Point QQ: vx=0v_x = 0 (flat slope).
  • Point RR: vx>0v_x > 0 (positive slope).
  • Point SS: vx=0v_x = 0 (flat slope).

Order (ascending velocity): P,Q,S,RP, Q, S, R.


(b) When is vx>0v_x > 0, vx=0v_x = 0, vx<0v_x < 0?

  • vx>0v_x > 0: Between QQ and RR (upward slope).
  • vx=0v_x = 0: At QQ and SS (horizontal tangent).
  • vx<0v_x < 0: Before QQ (downward slope) and after SS.

(c) Arrange points based on speed (magnitude of vxv_x):

  • Speed is the absolute value of velocity:
    • PP: Large negative slope → High speed.
    • QQ: vx=0v_x = 0 → Zero speed.
    • RR: Positive slope → High speed.
    • SS: vx=0v_x = 0 → Zero speed.

Order (ascending speed): Q,S,R,PQ, S, R, P.


(d) At which points is acceleration positive?

  • Positive acceleration (a>0a > 0): vxv_x increases.
    • Between PP and QQ and between SS and RR.

(e) At which points is acceleration negative?

  • Negative acceleration (a<0a < 0): vxv_x decreases.
    • Between QQ and SS.

(f) Where does the speed increase?

  • Speed increases if vxv_x moves away from zero (positive or negative acceleration and velocity alignment):
    • Between PP and QQ, and between RR and SS.

Would you like detailed calculations or further clarifications?


Related Questions:

  1. How do we calculate acceleration from such graphs?
  2. How is the concept of slope linked to instantaneous velocity?
  3. How do we identify inflection points for acceleration?
  4. What is the significance of horizontal tangents in motion graphs?
  5. How does curvature affect interpretation in such problems?

Tip: Always check the slope direction for velocity and its rate of change for acceleration in motion graphs.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Kinematics
Velocity Analysis
Acceleration Analysis

Formulas

Velocity: v_x = dx/dt
Acceleration: a_x = dv_x/dt

Theorems

Slope interpretation for instantaneous velocity
Sign analysis of derivatives for acceleration

Suitable Grade Level

Grades 10-12