Math Problem Statement

A random variable X has the probability function p(x)= 1/2^x  ; x =1,2,3...
Find moment generating function 
Find expected value
Find variance

Solution

We are given the probability mass function (PMF) of a random variable XX as:

p(x)=12x,x=1,2,3,p(x) = \frac{1}{2^x}, \quad x = 1, 2, 3, \dots

1. Moment Generating Function (MGF):

The moment generating function MX(t)M_X(t) of XX is defined as:

MX(t)=E[etX]=x=1etxp(x).M_X(t) = \mathbb{E}[e^{tX}] = \sum_{x=1}^\infty e^{tx} p(x).

Substitute p(x)=12xp(x) = \frac{1}{2^x}:

MX(t)=x=1etx12x=x=1(et2)x.M_X(t) = \sum_{x=1}^\infty e^{tx} \cdot \frac{1}{2^x} = \sum_{x=1}^\infty \left( \frac{e^t}{2} \right)^x.

This is a geometric series with first term a=et2a = \frac{e^t}{2} and ratio r=et2r = \frac{e^t}{2}, valid for r<1|r| < 1, i.e., et<2e^t < 2 or t<ln2t < \ln 2. The sum of the series is:

MX(t)=et21et2=et2et,for t<ln2.M_X(t) = \frac{\frac{e^t}{2}}{1 - \frac{e^t}{2}} = \frac{e^t}{2 - e^t}, \quad \text{for } t < \ln 2.

2. Expected Value (Mean):

The expected value E[X]\mathbb{E}[X] is given by:

E[X]=x=1xp(x)=x=1x12x.\mathbb{E}[X] = \sum_{x=1}^\infty x \cdot p(x) = \sum_{x=1}^\infty x \cdot \frac{1}{2^x}.

We can find this using the formula for the expected value of a weighted geometric series. Let:

S=x=1x12x.S = \sum_{x=1}^\infty x \cdot \frac{1}{2^x}.

Differentiate the geometric series x=1rx=r1r,\sum_{x=1}^\infty r^x = \frac{r}{1 - r}, with respect to rr:

ddr(r1r)=1(1r)2.\frac{d}{dr} \left( \frac{r}{1-r} \right) = \frac{1}{(1-r)^2}.

For r=12r = \frac{1}{2}, we have:

S=x=1x12x=12(112)2=1214=2.S = \sum_{x=1}^\infty x \cdot \frac{1}{2^x} = \frac{\frac{1}{2}}{(1 - \frac{1}{2})^2} = \frac{\frac{1}{2}}{\frac{1}{4}} = 2.

Thus, E[X]=2\mathbb{E}[X] = 2.

3. Variance:

The variance Var(X)\text{Var}(X) is given by:

[ \text{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2. ]

To compute E[X2]\mathbb{E}[X^2], note that:

E[X2]=x=1x212x.\mathbb{E}[X^2] = \sum_{x=1}^\infty x^2 \cdot \frac{1}{2^x}.

This can also be computed using differentiation. If Sk=x=1xkrxS_k = \sum_{x=1}^\infty x^k \cdot r^x, then SkS_k is derived from the derivatives of the geometric series. We will compute S2S_2 directly as:

S2=r(1+r)(1r)3.S_2 = \frac{r(1 + r)}{(1 - r)^3}.

For r=12r = \frac{1}{2}, we have:

E[X2]=12(1+12)(112)3=123218=6.\mathbb{E}[X^2] = \frac{\frac{1}{2}(1 + \frac{1}{2})}{(1 - \frac{1}{2})^3} = \frac{\frac{1}{2} \cdot \frac{3}{2}}{\frac{1}{8}} = 6.

Thus, the variance is:

[ \text{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = 6 - 2^2 = 6 - 4 = 2. ]

Final Results:

  1. Moment Generating Function (MGF): MX(t)=et2et,t<ln2.M_X(t) = \frac{e^t}{2 - e^t}, \, t < \ln 2.
  2. Expected Value: E[X]=2.\mathbb{E}[X] = 2.
  3. Variance: Var(X)=2.\text{Var}(X) = 2.

Would you like me to explain any step in more detail or discuss related concepts? 😊

Here are 5 related questions to deepen your understanding:

  1. How is the convergence condition of the MGF derived?
  2. Can we verify E[X]\mathbb{E}[X] using an alternative method?
  3. What happens to the MGF when tt \to -\infty?
  4. How would the results change if p(x)=13xp(x) = \frac{1}{3^x} instead?
  5. How can the variance formula Var(X)=E[X2](E[X])2\text{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 be derived?

Tip: Always check the domain of validity for the MGF to ensure proper usage in solving problems!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Probability Theory
Moment Generating Function
Expected Value
Variance
Geometric Series

Formulas

Moment Generating Function: M_X(t) = E[e^{tX}] = Σ e^{tx} p(x)
Expected Value: E[X] = Σ x * p(x)
Variance: Var(X) = E[X^2] - (E[X])^2

Theorems

Geometric Series Sum
Differentiation of Geometric Series

Suitable Grade Level

College/University