Math Problem Statement

a problem related to finding the moment-generating function (MGF), mean, and variance of a discrete random variable �X with a given probability mass function (PMF).

Given:

The probability mass function (PMF) �(�)f(x) is provided as:

f(x)=1/2*(2/3)^x , x = 1,2,3.....

Solution

To solve this problem, we'll follow these steps:

  1. Find the Moment-Generating Function (MGF) of XX.
  2. Determine the Mean (μ\mu) of XX using the MGF.
  3. Determine the Variance (σ2\sigma^2) of XX using the MGF.

1. Finding the Moment-Generating Function (MGF) MX(t)M_X(t)

The MGF of a discrete random variable XX is defined as:

MX(t)=E[etX]=x=1etxf(x)M_X(t) = \mathbb{E}[e^{tX}] = \sum_{x=1}^{\infty} e^{tx} f(x)

Given the PMF f(x)=12(23)xf(x) = \frac{1}{2} \left(\frac{2}{3}\right)^x, the MGF becomes:

MX(t)=x=1etx12(23)xM_X(t) = \sum_{x=1}^{\infty} e^{tx} \cdot \frac{1}{2} \left(\frac{2}{3}\right)^x

Simplifying the expression inside the sum:

MX(t)=12x=1(et23)x=12x=1(2et3)xM_X(t) = \frac{1}{2} \sum_{x=1}^{\infty} \left(e^{t} \cdot \frac{2}{3}\right)^x = \frac{1}{2} \sum_{x=1}^{\infty} \left(\frac{2e^t}{3}\right)^x

This is a geometric series with the common ratio r=2et3r = \frac{2e^t}{3}. The sum of an infinite geometric series x=1rx\sum_{x=1}^{\infty} r^x is r1r\frac{r}{1-r} for r<1|r| < 1.

So,

MX(t)=122et312et3=et32etM_X(t) = \frac{1}{2} \cdot \frac{\frac{2e^t}{3}}{1 - \frac{2e^t}{3}} = \frac{e^t}{3 - 2e^t}

2. Finding the Mean (μ\mu) using MGF

The mean of XX, E[X]\mathbb{E}[X], can be found by taking the first derivative of the MGF with respect to tt and evaluating at t=0t = 0:

μ=MX(0)\mu = M'_X(0)

Let's find the derivative MX(t)M'_X(t):

MX(t)=ddt(et32et)M'_X(t) = \frac{d}{dt} \left(\frac{e^t}{3 - 2e^t}\right)

Using the quotient rule:

MX(t)=(32et)etet(2et)(32et)2=3et(32et)2M'_X(t) = \frac{(3 - 2e^t) \cdot e^t - e^t \cdot (-2e^t)}{(3 - 2e^t)^2} = \frac{3e^t}{(3 - 2e^t)^2}

Evaluating at t=0t = 0:

μ=MX(0)=3e0(32e0)2=39=13\mu = M'_X(0) = \frac{3e^0}{(3 - 2e^0)^2} = \frac{3}{9} = \frac{1}{3}

3. Finding the Variance (σ2\sigma^2) using MGF

The variance of XX, Var(X)\text{Var}(X), can be found using:

Var(X)=MX(0)[MX(0)]2\text{Var}(X) = M''_X(0) - [M'_X(0)]^2

First, we find the second derivative MX(t)M''_X(t):

MX(t)=ddt(3et(32et)2)M''_X(t) = \frac{d}{dt} \left(\frac{3e^t}{(3 - 2e^t)^2}\right)

This derivative is a bit complex, but by applying the quotient rule again:

MX(t)=(32et)23et3et2(32et)(2et)(32et)4M''_X(t) = \frac{(3 - 2e^t)^2 \cdot 3e^t - 3e^t \cdot 2(3 - 2e^t)(-2e^t)}{(3 - 2e^t)^4}

Evaluating MX(t)M''_X(t) at t=0t = 0:

MX(0)=3(3)92+1227=19+49=59M''_X(0) = \frac{3(3)}{9^2} + \frac{12}{27} = \frac{1}{9} + \frac{4}{9} = \frac{5}{9}

Thus, the variance is:

Var(X)=MX(0)[MX(0)]2=59(13)2=5919=49\text{Var}(X) = M''_X(0) - [M'_X(0)]^2 = \frac{5}{9} - \left(\frac{1}{3}\right)^2 = \frac{5}{9} - \frac{1}{9} = \frac{4}{9}

Summary of Results:

  • MGF: MX(t)=et32etM_X(t) = \frac{e^t}{3 - 2e^t}
  • Mean (μ\mu): 13\frac{1}{3}
  • Variance (σ2\sigma^2): 49\frac{4}{9}

Would you like a detailed explanation of any part, or do you have any questions?


Here are five related questions:

  1. How would you find the MGF for a different PMF?
  2. Can the MGF be used to find higher moments like skewness and kurtosis?
  3. What happens to the MGF if XX is a continuous random variable?
  4. How is the variance related to the second moment of a distribution?
  5. Can you derive the MGF for a binomial distribution?

Tip: The moment-generating function is a powerful tool because it can uniquely determine the distribution of a random variable.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Probability Theory
Moment-Generating Function (MGF)
Mean
Variance
Geometric Series

Formulas

Moment-Generating Function (MGF) formula
Mean formula
Variance formula

Theorems

Properties of Geometric Series

Suitable Grade Level

Advanced Undergraduate