Math Problem Statement
Nilai minimum dari f(x,y)=x²+4xy+y² dengan kendala x-y-6 adalah
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Optimization
Lagrange Multiplier
Partial Derivatives
Constraints
Formulas
Lagrange Multiplier formula: ∇f = λ∇g
Partial derivatives of f(x,y) = x² + 4xy + y²
Constraint equation: x - y = 6
Theorems
Lagrange Multiplier Theorem
Suitable Grade Level
Undergraduate (Calculus, Multivariable Calculus)
Related Recommendation
Find Absolute Maximum and Minimum of f(x, y) Using Lagrange Multipliers
Minimize f(x, y) = 6x^2 + 5y^2 - xy using Lagrange Multipliers
Optimization of x^2 + xy + y^2 under Constraint x^2 - xy - 6y^2 = 1
Lagrange Multipliers: Minimizing x^2 + 3y^2 + 10 with Constraint 8 - x - y = 0
Maximization and Minimization using Lagrange Multipliers: f(x,y) = -2x^2 + 2x - y^2 + 4