Math Problem Statement

What should be the height of the box to minimize the total cost of materials, given that a cube box with an open top has a volume of 1,096 cubic centimeters, the base material costs Php2 per square centimeter, and the side material costs Php2 per square centimeter?

Solution

Let's analyze and solve the problem step by step.


1. Understanding the Problem

We are tasked with minimizing the cost of materials for a box that has:

  • An open top (so no top surface),
  • A square base of dimensions (L2x)×(L2x)(L - 2x) \times (L - 2x), where xx is the height of the box,
  • A fixed volume of 1,096 cubic centimeters.

The cost per square centimeter is:

  • Php2 for the base\text{Php2 for the base},
  • Php2 for the sides\text{Php2 for the sides}.

We need to determine the height xx that minimizes the total cost of materials.


2. Defining Variables

  • Let LL be the length of the original square cardboard.
  • Let xx be the height of the box (cut-out size).

After folding, the dimensions are:

  • Base: (L2x)×(L2x)(L - 2x) \times (L - 2x),
  • Height: xx.

The volume of the box is: Volume=Base Area×Height=(L2x)2x.\text{Volume} = \text{Base Area} \times \text{Height} = (L - 2x)^2 \cdot x.

We know the volume is 1,0961,096 cm³: (L2x)2x=1,096.(L - 2x)^2 \cdot x = 1,096.


3. Cost Function

The total cost of materials includes:

  1. Base cost: Base Cost=2(Base Area)=2(L2x)2.\text{Base Cost} = 2 \cdot (\text{Base Area}) = 2 \cdot (L - 2x)^2.
  2. Side cost (4 rectangular sides):
    • Each side has an area of (L2x)x(L - 2x) \cdot x,
    • Total side area: 4(L2x)x4 \cdot (L - 2x) \cdot x,
    • Cost of sides: 2Total Side Area2 \cdot \text{Total Side Area}.

Thus: Side Cost=24(L2x)x=8x(L2x).\text{Side Cost} = 2 \cdot 4 \cdot (L - 2x) \cdot x = 8x(L - 2x).

The total cost function CC is: C(x)=2(L2x)2+8x(L2x).C(x) = 2(L - 2x)^2 + 8x(L - 2x).


4. Solving for LL in Terms of xx

From the volume constraint: (L2x)2x=1,096.(L - 2x)^2 \cdot x = 1,096.

Solve for LL in terms of xx: L2x=1,096x.L - 2x = \sqrt{\frac{1,096}{x}}.

Thus: L=2x+1,096x.L = 2x + \sqrt{\frac{1,096}{x}}.


5. Substituting into the Cost Function

Substitute LL into the cost function C(x)C(x): C(x)=2(1,096x)2+8x(1,096x)2(2x)2+...C(x) = 2\left(\sqrt{\frac{1,096}{x}}\right)^2 + 8x\left(\sqrt{\frac{1,096}{x}}\right) - 2(2x)^2 + ...


Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Optimization
Volume of a Box
Cost Minimization
Calculus - Derivatives

Formulas

Volume of Box = Base Area × Height
Base Area = (L - 2x)^2
Cost = Base Cost + Side Cost
Base Cost = 2 × (Base Area)
Side Cost = 8x(L - 2x)

Theorems

Optimization Using Derivatives
Volume and Area Constraints

Suitable Grade Level

Grades 11-12