Math Problem Statement

Suppose now that X is a gamma random variable, which is continuous, and has density function f (x) = ba Γ(a) xa−1 e−bx, 0 < x < ∞, where Γ(a) = ∫ ∞ 0 xa−1 e−x dx. Here, a > 0 and b > 0. Find GX (t) = E(etX ) and for what values of t are appropriate. How could you use GX to find E(X) and Var(X).

Solution

To solve the given problem, we will first compute the moment generating function (MGF) GX(t)=E(etX)G_X(t) = \mathbb{E}(e^{tX}) for the gamma distribution, and then use this MGF to find the expected value E(X)\mathbb{E}(X) and variance Var(X)\text{Var}(X).

Step 1: Deriving the Moment Generating Function (MGF)

The MGF is defined as:

GX(t)=E(etX)=0etxf(x)dxG_X(t) = \mathbb{E}(e^{tX}) = \int_0^\infty e^{tx} f(x) \, dx

where f(x)f(x) is the probability density function (PDF) of the gamma distribution:

f(x)=baΓ(a)xa1ebx,0<x<f(x) = \frac{b^a}{\Gamma(a)} x^{a-1} e^{-bx}, \quad 0 < x < \infty

Substitute f(x)f(x) into the expression for GX(t)G_X(t):

GX(t)=0etxbaΓ(a)xa1ebxdxG_X(t) = \int_0^\infty e^{tx} \cdot \frac{b^a}{\Gamma(a)} x^{a-1} e^{-bx} \, dx

Simplify the exponent terms etxebx=e(bt)xe^{tx} \cdot e^{-bx} = e^{-(b-t)x}:

GX(t)=baΓ(a)0xa1e(bt)xdxG_X(t) = \frac{b^a}{\Gamma(a)} \int_0^\infty x^{a-1} e^{-(b-t)x} \, dx

This integral is of the standard gamma form:

0xa1eλxdx=Γ(a)λafor λ>0\int_0^\infty x^{a-1} e^{-\lambda x} \, dx = \frac{\Gamma(a)}{\lambda^a} \quad \text{for } \lambda > 0

Here, λ=bt\lambda = b - t, so we get:

GX(t)=baΓ(a)Γ(a)(bt)aG_X(t) = \frac{b^a}{\Gamma(a)} \cdot \frac{\Gamma(a)}{(b-t)^a}

Simplifying further:

GX(t)=(bbt)aG_X(t) = \left( \frac{b}{b-t} \right)^a

Step 2: Determining the Values of tt

The MGF exists only when the integral converges, which means bt>0b - t > 0. Therefore, the MGF is valid for:

t<bt < b

Step 3: Using the MGF to Find E(X)\mathbb{E}(X) and Var(X)\text{Var}(X)

Finding E(X)\mathbb{E}(X)

The expectation E(X)\mathbb{E}(X) is the first derivative of GX(t)G_X(t) evaluated at t=0t = 0:

E(X)=GX(0)\mathbb{E}(X) = G_X'(0)

First, differentiate GX(t)=(bbt)aG_X(t) = \left( \frac{b}{b-t} \right)^a with respect to tt:

GX(t)=a(bbt)a+11(bt)2=a(bbt)a+11btG_X'(t) = a \left( \frac{b}{b-t} \right)^{a+1} \cdot \frac{1}{(b-t)^2} = a \left( \frac{b}{b-t} \right)^{a+1} \frac{1}{b-t}

At t=0t = 0:

GX(0)=abb2=abG_X'(0) = a \cdot \frac{b}{b^2} = \frac{a}{b}

Thus, the expected value is:

E(X)=ab\mathbb{E}(X) = \frac{a}{b}

Finding Var(X)\text{Var}(X)

The variance Var(X)\text{Var}(X) is computed using the second derivative of the MGF:

Var(X)=GX(0)(GX(0))2\text{Var}(X) = G_X''(0) - (G_X'(0))^2

First, compute the second derivative of GX(t)G_X(t):

GX(t)=a(a+1)(bt)a+2b2G_X''(t) = \frac{a(a+1)}{(b-t)^{a+2}} \cdot b^2

At t=0t = 0:

GX(0)=a(a+1)b2G_X''(0) = \frac{a(a+1)}{b^2}

Now, the variance is:

Var(X)=GX(0)(GX(0))2=a(a+1)b2(ab)2\text{Var}(X) = G_X''(0) - (G_X'(0))^2 = \frac{a(a+1)}{b^2} - \left( \frac{a}{b} \right)^2

Simplify:

Var(X)=ab2\text{Var}(X) = \frac{a}{b^2}

Final Results

  1. Moment generating function (MGF): GX(t)=(bbt)a,t<bG_X(t) = \left( \frac{b}{b-t} \right)^a, \quad t < b

  2. Expected value: E(X)=ab\mathbb{E}(X) = \frac{a}{b}

  3. Variance: Var(X)=ab2\text{Var}(X) = \frac{a}{b^2}


Would you like further clarification on any of these steps?

Here are 5 related questions:

  1. How do you find higher moments from the MGF?
  2. What is the relationship between the MGF and cumulants?
  3. How is the MGF used in hypothesis testing?
  4. How does the gamma distribution generalize to other distributions?
  5. How do you compute covariances using joint MGFs?

Tip: The moment generating function is a powerful tool for finding moments (like mean and variance) because its nth derivative at t=0t = 0 gives the nth moment of the distribution.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Gamma Distribution
Moment Generating Function (MGF)
Probability Density Function (PDF)
Expected Value
Variance

Formulas

f(x) = (b^a / Γ(a)) * x^(a-1) * e^(-bx)
Γ(a) = ∫ ∞ 0 x^(a-1) * e^(-x) dx
GX(t) = (b / (b - t))^a
E(X) = a / b
Var(X) = a / b^2

Theorems

Gamma Function Theorem
Moment Generating Function (MGF) Theorem

Suitable Grade Level

Undergraduate