Math Problem Statement

Find the mean of f(x) = 3/4(x-1)(3-x) for x = [1,3]

Solution

To find the mean (average) value of a function f(x)f(x) over an interval [a,b][a,b], we use the formula:

Mean value of f(x)=1baabf(x)dx\text{Mean value of } f(x) = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx

In this case, the function is f(x)=34(x1)(3x)f(x) = \frac{3}{4}(x-1)(3-x) and the interval is [1,3][1,3]. Let's calculate the mean step by step:

Step 1: Set up the formula

The interval is [1,3][1, 3], so we substitute a=1a = 1 and b=3b = 3:

Mean value of f(x)=1311334(x1)(3x)dx\text{Mean value of } f(x) = \frac{1}{3-1} \int_{1}^{3} \frac{3}{4}(x-1)(3-x) \, dx

This simplifies to:

Mean value of f(x)=121334(x1)(3x)dx\text{Mean value of } f(x) = \frac{1}{2} \int_{1}^{3} \frac{3}{4}(x-1)(3-x) \, dx

Step 2: Expand the function

Now let's expand (x1)(3x)(x-1)(3-x):

(x1)(3x)=x(3x)1(3x)=3xx23+x=x2+4x3(x-1)(3-x) = x(3-x) - 1(3-x) = 3x - x^2 - 3 + x = -x^2 + 4x - 3

Thus, the function becomes:

f(x)=34(x2+4x3)f(x) = \frac{3}{4}(-x^2 + 4x - 3)

Step 3: Integrate the function

Now, we integrate f(x)f(x) over the interval [1,3][1,3]:

1334(x2+4x3)dx=3413(x2+4x3)dx\int_{1}^{3} \frac{3}{4}(-x^2 + 4x - 3) \, dx = \frac{3}{4} \int_{1}^{3} (-x^2 + 4x - 3) \, dx

We integrate each term separately:

13x2dx=[x33]13=273+13=9+13=263\int_{1}^{3} -x^2 \, dx = \left[ -\frac{x^3}{3} \right]_{1}^{3} = -\frac{27}{3} + \frac{1}{3} = -9 + \frac{1}{3} = -\frac{26}{3}

134xdx=[2x2]13=2(9)2(1)=182=16\int_{1}^{3} 4x \, dx = \left[ 2x^2 \right]_{1}^{3} = 2(9) - 2(1) = 18 - 2 = 16

133dx=[3x]13=3(3)+3(1)=9+3=6\int_{1}^{3} -3 \, dx = \left[ -3x \right]_{1}^{3} = -3(3) + 3(1) = -9 + 3 = -6

Now, putting these together:

34(263+166)=34(263+10)\frac{3}{4} \left( -\frac{26}{3} + 16 - 6 \right) = \frac{3}{4} \left( -\frac{26}{3} + 10 \right)

Convert 10 to a fraction:

34(263+303)=34(43)\frac{3}{4} \left( -\frac{26}{3} + \frac{30}{3} \right) = \frac{3}{4} \left( \frac{4}{3} \right)

Simplifying:

34×43=1\frac{3}{4} \times \frac{4}{3} = 1

Step 4: Calculate the mean value

Since the integral evaluates to 1, the mean value is:

Mean value of f(x)=12×1=12\text{Mean value of } f(x) = \frac{1}{2} \times 1 = \frac{1}{2}

Thus, the mean value of f(x)f(x) over the interval [1,3][1, 3] is:

12\boxed{\frac{1}{2}}

Would you like further details or have any questions?

Here are 5 related questions to deepen understanding:

  1. How does the mean value theorem apply to the function f(x)f(x)?
  2. What is the significance of finding the mean value of a function?
  3. How does changing the interval affect the mean of a function?
  4. Can you find the mean of f(x)f(x) over the interval [0,2][0,2]?
  5. How would the result change if the function were f(x)=14(x1)(3x)f(x) = \frac{1}{4}(x-1)(3-x)?

Tip: When integrating polynomial functions, expanding them first can simplify the calculation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Mean Value of a Function
Polynomial Expansion

Formulas

Mean value of a function: (1/(b-a)) ∫[a,b] f(x) dx
Polynomial expansion: (x-1)(3-x) = -x^2 + 4x - 3

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Undergraduate - First Year