Math Problem Statement

  1. If a = [3, -2, -3] and b = [r, s, t] such that r2 + s2 + t2 = 88, find the maximum value of a . b.

Solution

To find the maximum value of the dot product ab\mathbf{a} \cdot \mathbf{b} given a=[3,2,3]\mathbf{a} = [3, -2, -3] and b=[r,s,t]\mathbf{b} = [r, s, t] with the constraint r2+s2+t2=88r^2 + s^2 + t^2 = 88, we can use the Cauchy-Schwarz inequality.

Cauchy-Schwarz Inequality

The Cauchy-Schwarz inequality states that for any two vectors u\mathbf{u} and v\mathbf{v}: uvuv|\mathbf{u} \cdot \mathbf{v}| \leq \|\mathbf{u}\| \|\mathbf{v}\|

Where u\|\mathbf{u}\| denotes the magnitude (or norm) of vector u\mathbf{u}.

Applying the Inequality

  1. Calculate the magnitude of a\mathbf{a}: a=32+(2)2+(3)2=9+4+9=22\|\mathbf{a}\| = \sqrt{3^2 + (-2)^2 + (-3)^2} = \sqrt{9 + 4 + 9} = \sqrt{22}

  2. Calculate the magnitude of b\mathbf{b}: b=r2+s2+t2=88\|\mathbf{b}\| = \sqrt{r^2 + s^2 + t^2} = \sqrt{88}

According to the Cauchy-Schwarz inequality: abab|\mathbf{a} \cdot \mathbf{b}| \leq \|\mathbf{a}\| \|\mathbf{b}\|

  1. Substitute the magnitudes into the inequality: ab2288|\mathbf{a} \cdot \mathbf{b}| \leq \sqrt{22} \cdot \sqrt{88}

  2. Simplify the expression: ab22×88|\mathbf{a} \cdot \mathbf{b}| \leq \sqrt{22 \times 88} ab1936|\mathbf{a} \cdot \mathbf{b}| \leq \sqrt{1936} ab44|\mathbf{a} \cdot \mathbf{b}| \leq 44

The maximum value of ab\mathbf{a} \cdot \mathbf{b} occurs when a\mathbf{a} and b\mathbf{b} are in the same direction. This means: b=ka\mathbf{b} = k \mathbf{a}

For some scalar kk, such that: r2+s2+t2=88\sqrt{r^2 + s^2 + t^2} = \sqrt{88}

Given: a=[3,2,3]\mathbf{a} = [3, -2, -3] b=k[3,2,3]\mathbf{b} = k[3, -2, -3]

Thus: b=[3k,2k,3k]\mathbf{b} = [3k, -2k, -3k]

And: (3k)2+(2k)2+(3k)2=88(3k)^2 + (-2k)^2 + (-3k)^2 = 88 9k2+4k2+9k2=889k^2 + 4k^2 + 9k^2 = 88 22k2=8822k^2 = 88 k2=4k^2 = 4 k=±2k = \pm 2

For the maximum value, we take the positive value of kk: [ \mathbf{b} = 2[3, -2, -3] = [6, -4, -6] ]

Then: [ \mathbf{a} \cdot \mathbf{b} = [3, -2, -3] \cdot [6, -4, -6] ] ab=(36)+(24)+(36)\mathbf{a} \cdot \mathbf{b} = (3 \cdot 6) + (-2 \cdot -4) + (-3 \cdot -6) ab=18+8+18\mathbf{a} \cdot \mathbf{b} = 18 + 8 + 18 ab=44\mathbf{a} \cdot \mathbf{b} = 44

Therefore, the maximum value of ab\mathbf{a} \cdot \mathbf{b} is 4444.

Would you like any further details or have any questions?

Here are some questions you might be interested in:

  1. How do you determine the angle between two vectors?
  2. What are orthogonal vectors, and how do you identify them?
  3. How can you project one vector onto another?
  4. What is the geometric interpretation of the cross product?
  5. How do you find the area of a parallelogram using vectors?

Tip: When maximizing or minimizing dot products subject to constraints, the Cauchy-Schwarz inequality is a powerful tool to use.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vectors
Dot Product
Cauchy-Schwarz Inequality

Formulas

Dot product formula
Cauchy-Schwarz inequality

Theorems

Cauchy-Schwarz inequality

Suitable Grade Level

Advanced High School