Math Problem Statement

Let C = {~c 1 , ~ c2 } be the basis for R 2 with ~c 1 = ✓ 2 3 ◆ , ~ c2 = ✓3 5 ◆ and let T : R 2 ! R 2 a linear transformation. Suppose [T (c 1 )] C = ✓1 0 ◆ and [T (c 2 )] C = ✓4 2 ◆ . Find the matrix [T ] E .

Solution

To find the matrix [T]E[T]_E of the linear transformation TT in the standard basis E={e1,e2}E = \{e_1, e_2\} of R2\mathbb{R}^2, we need to perform the following steps:


Step 1: Understand the problem and given data

  • The basis C={c1,c2}C = \{\mathbf{c}_1, \mathbf{c}_2\} is given as: c1=[23],c2=[35].\mathbf{c}_1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad \mathbf{c}_2 = \begin{bmatrix} 3 \\ 5 \end{bmatrix}.
  • The transformation TT is defined in terms of its action on the CC-basis vectors: [ [T(\mathbf{c}_1)]_C = \begin{bmatrix} 1 \ 0 \end{bmatrix}, \quad [T(\mathbf{c}_2)]_C = \begin{bmatrix} 4 \ 2 \end{bmatrix}. ] These are the coordinates of T(c1)T(\mathbf{c}_1) and T(c2)T(\mathbf{c}_2) in the basis CC.

Step 2: Express T(c1)T(\mathbf{c}_1) and T(c2)T(\mathbf{c}_2) in terms of standard basis EE

To convert the coordinates in basis CC into standard basis EE, use the relation: T(ci)=j=12(coordinate of T(ci) in basis C)cj.T(\mathbf{c}_i) = \sum_{j=1}^2 \text{(coordinate of } T(\mathbf{c}_i) \text{ in basis } C) \cdot \mathbf{c}_j.

Compute T(c1)T(\mathbf{c}_1):

T(c1)=1c1+0c2=c1=[23].T(\mathbf{c}_1) = 1 \cdot \mathbf{c}_1 + 0 \cdot \mathbf{c}_2 = \mathbf{c}_1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}.

Compute T(c2)T(\mathbf{c}_2):

T(c2)=4c1+2c2=4[23]+2[35].T(\mathbf{c}_2) = 4 \cdot \mathbf{c}_1 + 2 \cdot \mathbf{c}_2 = 4 \begin{bmatrix} 2 \\ 3 \end{bmatrix} + 2 \begin{bmatrix} 3 \\ 5 \end{bmatrix}. Simplify: T(c2)=[812]+[610]=[1422].T(\mathbf{c}_2) = \begin{bmatrix} 8 \\ 12 \end{bmatrix} + \begin{bmatrix} 6 \\ 10 \end{bmatrix} = \begin{bmatrix} 14 \\ 22 \end{bmatrix}.


Step 3: Form the transformation matrix [T]E[T]_E

The columns of [T]E[T]_E are the images of the standard basis vectors e1=[10]\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} and e2=[01]\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, expressed in the standard basis. These are just T(c1)T(\mathbf{c}_1) and T(c2)T(\mathbf{c}_2), as computed in Step 2.

Thus: [T]E=[T(c1)T(c2)]=[214322].[T]_E = \begin{bmatrix} T(\mathbf{c}_1) & T(\mathbf{c}_2) \end{bmatrix} = \begin{bmatrix} 2 & 14 \\ 3 & 22 \end{bmatrix}.


Final Answer:

[T]E=[214322].[T]_E = \begin{bmatrix} 2 & 14 \\ 3 & 22 \end{bmatrix}.

Would you like further explanation or verification of these calculations? Here are some related questions:

  1. What are the properties of a linear transformation represented by a matrix?
  2. How do changes in basis affect the representation of a linear transformation?
  3. Can this method be extended to higher-dimensional spaces?
  4. What is the significance of the columns of the transformation matrix?
  5. How do you compute the inverse of a transformation matrix if it exists?

Tip: Always verify your calculations by applying the transformation matrix to the original basis vectors!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Change of Basis
Linear Transformation

Formulas

T(ci) = Σ (coordinate of T(ci) in basis C) ⋅ cj
[T]_E = [T(c1) T(c2)] in standard basis E

Theorems

Basis Transformation
Matrix Representation of Linear Transformations

Suitable Grade Level

Undergraduate - Linear Algebra