Math Problem Statement

Let C = {⃗c 1, ⃗c 2} be the basis for R2 with ⃗ c 1 =  2 −3  , ⃗c 2 = −3 5  and let T : R2 → R2 a linear transformation. Suppose [T (c1)]C = 1 0  and [T (c2)]C = 4 2  . Find the matrix [T ]E

Solution

To find the matrix [T]E[T]_E of the linear transformation TT with respect to the standard basis EE in R2\mathbb{R}^2, we can use the following approach:

Given:

  • Basis C={c1,c2}C = \{ \vec{c}_1, \vec{c}_2 \} with c1=(23)\vec{c}_1 = \begin{pmatrix} 2 \\ -3 \end{pmatrix} and c2=(35)\vec{c}_2 = \begin{pmatrix} -3 \\ 5 \end{pmatrix}.
  • [T(c1)]C=(10)[T(\vec{c}_1)]_C = \begin{pmatrix} 1 \\ 0 \end{pmatrix} and [T(c2)]C=(42)[T(\vec{c}_2)]_C = \begin{pmatrix} 4 \\ 2 \end{pmatrix}.

Steps:

  1. Interpret the Action of TT in Basis CC: The coordinates [T(c1)]C=(10)[T(\vec{c}_1)]_C = \begin{pmatrix} 1 \\ 0 \end{pmatrix} and [T(c2)]C=(42)[T(\vec{c}_2)]_C = \begin{pmatrix} 4 \\ 2 \end{pmatrix} tell us that: T(c1)=1c1+0c2=c1=(23)T(\vec{c}_1) = 1 \cdot \vec{c}_1 + 0 \cdot \vec{c}_2 = \vec{c}_1 = \begin{pmatrix} 2 \\ -3 \end{pmatrix} T(c2)=4c1+2c2=4(23)+2(35)T(\vec{c}_2) = 4 \cdot \vec{c}_1 + 2 \cdot \vec{c}_2 = 4 \begin{pmatrix} 2 \\ -3 \end{pmatrix} + 2 \begin{pmatrix} -3 \\ 5 \end{pmatrix}

  2. Compute T(c2)T(\vec{c}_2) in Standard Basis: Calculate each component of T(c2)T(\vec{c}_2) separately: T(c2)=4(23)+2(35)=(812)+(610)=(22)T(\vec{c}_2) = 4 \begin{pmatrix} 2 \\ -3 \end{pmatrix} + 2 \begin{pmatrix} -3 \\ 5 \end{pmatrix} = \begin{pmatrix} 8 \\ -12 \end{pmatrix} + \begin{pmatrix} -6 \\ 10 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}

  3. Construct the Matrix [T]E[T]_E: The columns of [T]E[T]_E are given by T(c1)T(\vec{c}_1) and T(c2)T(\vec{c}_2) expressed in the standard basis. Therefore: [T]E=(2232)[T]_E = \begin{pmatrix} 2 & 2 \\ -3 & -2 \end{pmatrix}

Final Answer:

[T]E=(2232)[T]_E = \begin{pmatrix} 2 & 2 \\ -3 & -2 \end{pmatrix}

Would you like further clarification on any step, or have questions?

Here are five related questions:

  1. How would you verify if TT is invertible using [T]E[T]_E?
  2. How does the matrix change if the basis CC is altered?
  3. What is the significance of the standard basis EE in this transformation?
  4. How can we interpret [T(c1)]C[T(\vec{c}_1)]_C and [T(c2)]C[T(\vec{c}_2)]_C geometrically?
  5. How does the choice of basis affect the computation of [T]E[T]_E?

Tip: In linear transformations, the columns of the transformation matrix often reveal how the basis vectors are transformed, helping us understand the transformation's effect on the entire space.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Change of Basis
Linear Transformations
Matrix Representation

Formulas

T(c1) = a * c1 + b * c2
Matrix representation of T in standard basis: [T]_E = [T(c1), T(c2)]

Theorems

Linear Transformation Matrix Representation
Change of Basis Theorem

Suitable Grade Level

Undergraduate (College Level)