Math Problem Statement

Diberi matriks A = [[3, -4], [1, 2]] dan B = [[3, 2], [1, 0]]. Cari nilai bagi: (i) B^T, (ii) A^-1, (iii) A^T + 3B.

Solution

The problem is asking you to work with matrices A=(3412)A = \begin{pmatrix} 3 & -4 \\ 1 & 2 \end{pmatrix} and B=(3210)B = \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}, to compute the following:

  1. BTB^T (the transpose of BB)
  2. A1A^{-1} (the inverse of AA)
  3. AT+3BA^T + 3B (the transpose of AA added to 3 times BB)

Solutions:

1. BTB^T

The transpose of a matrix is obtained by swapping rows and columns. Therefore: B=(3210),BT=(3120).B = \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}, \quad B^T = \begin{pmatrix} 3 & 1 \\ 2 & 0 \end{pmatrix}.

2. A1A^{-1}

The inverse of AA is computed as: A1=1det(A)(dbca), where det(A)=adbc.A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}, \text{ where } \text{det}(A) = ad - bc. For A=(3412)A = \begin{pmatrix} 3 & -4 \\ 1 & 2 \end{pmatrix}: det(A)=(3)(2)(1)(4)=6+4=10.\text{det}(A) = (3)(2) - (1)(-4) = 6 + 4 = 10. So: A1=110(2413)=(0.20.40.10.3).A^{-1} = \frac{1}{10} \begin{pmatrix} 2 & 4 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} 0.2 & 0.4 \\ -0.1 & 0.3 \end{pmatrix}.

3. AT+3BA^T + 3B

The transpose of AA, ATA^T, is: AT=(3142).A^T = \begin{pmatrix} 3 & 1 \\ -4 & 2 \end{pmatrix}. Now, calculate 3B3B: 3B=3(3210)=(9630).3B = 3 \cdot \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 9 & 6 \\ 3 & 0 \end{pmatrix}. Finally, compute AT+3BA^T + 3B: AT+3B=(3142)+(9630)=(12712).A^T + 3B = \begin{pmatrix} 3 & 1 \\ -4 & 2 \end{pmatrix} + \begin{pmatrix} 9 & 6 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} 12 & 7 \\ -1 & 2 \end{pmatrix}.

Final Results:

  1. BT=(3120)B^T = \begin{pmatrix} 3 & 1 \\ 2 & 0 \end{pmatrix}
  2. A1=(0.20.40.10.3)A^{-1} = \begin{pmatrix} 0.2 & 0.4 \\ -0.1 & 0.3 \end{pmatrix}
  3. AT+3B=(12712)A^T + 3B = \begin{pmatrix} 12 & 7 \\ -1 & 2 \end{pmatrix}

Would you like a detailed explanation of any of these steps?

Expanding Your Understanding:

  1. How do you calculate the determinant of a matrix?
  2. What is the geometric meaning of a transpose of a matrix?
  3. How does the inverse of a matrix relate to solving linear equations?
  4. Why does the determinant of a matrix need to be nonzero for the inverse to exist?
  5. How does scalar multiplication affect each element of a matrix?

Tip: When finding the inverse of a matrix, always double-check the determinant value—it ensures the calculation is valid!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Transposition
Matrix Inverse
Matrix Addition
Scalar Multiplication

Formulas

Transpose: For matrix B = [[a, b], [c, d]], B^T = [[a, c], [b, d]]
Inverse: For 2x2 matrix A = [[a, b], [c, d]], A^-1 = (1/det(A)) * [[d, -b], [-c, a]] where det(A) = ad - bc
Addition and Scalar Multiplication: A^T + kB = A^T + k * B

Theorems

Matrix Inverse exists if and only if the determinant is nonzero.
Matrix Transpose preserves the dimensions of the matrix.

Suitable Grade Level

Grades 11-12 (Pre-University)