Math Problem Statement

Jika matriks A = \(\begin{pmatrix} 2 & 0 \\ 3 & 4 \end{pmatrix}\) dan matriks B = \(\begin{pmatrix} 6 & 2 \\ -1 & 9 \end{pmatrix}\), maka berapakah nilai dari A + B^T? Simpulkan nilai dari determinan matriks P, Buatlah contoh matriks diagonal, simpulkanlah nilai dari invers matriks Q, dan analisislah matriks persamaan \((a-2b)/(3b) = (1/6)\).

Solution

I see that you've uploaded an image with several matrix-related questions. I'll go through each of them one by one and provide solutions.

1. If matrix A = (2034)\begin{pmatrix} 2 & 0 \\ 3 & 4 \end{pmatrix} and matrix B = (6219)\begin{pmatrix} 6 & 2 \\ -1 & 9 \end{pmatrix}, what is the value of A+BTA + B^T?

We need to first find the transpose of matrix BB and then add it to matrix AA.

Transpose of BB, BT=(6129)B^T = \begin{pmatrix} 6 & -1 \\ 2 & 9 \end{pmatrix}.

Now, adding matrices AA and BTB^T: A+BT=(2034)+(6129)=(81513)A + B^T = \begin{pmatrix} 2 & 0 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 6 & -1 \\ 2 & 9 \end{pmatrix} = \begin{pmatrix} 8 & -1 \\ 5 & 13 \end{pmatrix}

So, A+BT=(81513)A + B^T = \begin{pmatrix} 8 & -1 \\ 5 & 13 \end{pmatrix}.

2. Matrix P=(202034006)P = \begin{pmatrix} -2 & 0 & 2 \\ 0 & -3 & 4 \\ 0 & 0 & 6 \end{pmatrix}. What is the determinant of matrix PP?

Matrix PP is a triangular matrix (lower triangular matrix), so its determinant is the product of the diagonal elements: det(P)=(2)×(3)×6=36\text{det}(P) = (-2) \times (-3) \times 6 = 36

So, the determinant of PP is 36.

3. Give an example of a diagonal matrix.

A diagonal matrix is a square matrix in which all off-diagonal elements are zero. An example could be: [ D = \begin{pmatrix} 1 & 0 & 0 \ 0 & 2 &

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix addition
Matrix transpose
Determinants
Inverse matrices
Linear equations

Formulas

Matrix addition: A + B
Transpose: B^T
Determinant: det(P)
Inverse of a matrix: A^(-1)
Solving linear equations

Theorems

Properties of transpose matrices
Determinants of triangular matrices
Inverse of a 2x2 matrix
Solution of linear equations

Suitable Grade Level

Undergraduate