Math Problem Statement

can you give me the solution to this

Can you give me the solution to this matrix problem?

Solution

Let's solve each part of the problem step-by-step using the given matrices.

The matrices provided are:

A=[25254525252102585210],B=[358],C=[134242],D=[121]A = \begin{bmatrix} \frac{2}{5} & \frac{2}{5} & -\frac{4}{5} \\ \frac{2}{5} & \frac{2}{5} & \frac{2}{10} \\ \frac{2}{5} & -\frac{8}{5} & \frac{2}{10} \end{bmatrix}, \quad B = \begin{bmatrix} -3 \\ 5 \\ 8 \end{bmatrix}, \quad C = \begin{bmatrix} -1 & 3 & 4 \\ 2 & 4 & 2 \end{bmatrix}, \quad D = \begin{bmatrix} \frac{1}{2} \\ -1 \end{bmatrix}

(a) Calculate B+2(CTDT)B + 2(C^T D^T)

  1. Transpose of CC: CT=[123442]C^T = \begin{bmatrix} -1 & 2 \\ 3 & 4 \\ 4 & 2 \end{bmatrix}

  2. Transpose of DD: DT=[121]D^T = \begin{bmatrix} \frac{1}{2} & -1 \end{bmatrix}

  3. Calculate CTDTC^T D^T: CTDT=[123442][121]=[12232422]=[52520]C^T D^T = \begin{bmatrix} -1 & 2 \\ 3 & 4 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} \frac{1}{2} \\ -1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} - 2 \\ \frac{3}{2} - 4 \\ 2 - 2 \end{bmatrix} = \begin{bmatrix} -\frac{5}{2} \\ -\frac{5}{2} \\ 0 \end{bmatrix}

  4. Calculate 2(CTDT)2(C^T D^T): 2(CTDT)=2[52520]=[550]2(C^T D^T) = 2 \begin{bmatrix} -\frac{5}{2} \\ -\frac{5}{2} \\ 0 \end{bmatrix} = \begin{bmatrix} -5 \\ -5 \\ 0 \end{bmatrix}

  5. Add BB and 2(CTDT)2(C^T D^T): B+2(CTDT)=[358]+[550]=[808]B + 2(C^T D^T) = \begin{bmatrix} -3 \\ 5 \\ 8 \end{bmatrix} + \begin{bmatrix} -5 \\ -5 \\ 0 \end{bmatrix} = \begin{bmatrix} -8 \\ 0 \\ 8 \end{bmatrix}

So, the answer for (a) is: [808]\begin{bmatrix} -8 \\ 0 \\ 8 \end{bmatrix}

(b) Calculate 20A+BDC20A + BDC

  1. Calculate BDBD: BD=[358][121]=[32352548]BD = \begin{bmatrix} -3 \\ 5 \\ 8 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -1 \end{bmatrix} = \begin{bmatrix} -\frac{3}{2} & 3 \\ \frac{5}{2} & -5 \\ 4 & -8 \end{bmatrix}

  2. Calculate BDCBDC: BDC=[32352548][134242]BDC = \begin{bmatrix} -\frac{3}{2} & 3 \\ \frac{5}{2} & -5 \\ 4 & -8 \end{bmatrix} \begin{bmatrix} -1 & 3 & 4 \\ 2 & 4 & 2 \end{bmatrix} Calculating each element:

    • Row 1: (32)(1)+(3)(2),(32)(3)+(3)(4),(32)(4)+(3)(2)(- \frac{3}{2})(-1) + (3)(2), (- \frac{3}{2})(3) + (3)(4), (- \frac{3}{2})(4) + (3)(2)
    • Row 2: Same steps apply

After

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Addition
Matrix Multiplication
Determinant
Matrix Inversion
Matrix Transpose

Formulas

Matrix addition formula: A + B
Matrix multiplication formula: AB
Determinant formula for a 3x3 matrix
Inverse formula for a matrix (if determinant ≠ 0)

Theorems

Properties of matrix operations
Invertibility conditions for matrices
Transpose properties for matrices

Suitable Grade Level

Undergraduate Level