Math Problem Statement

Find A^2 + A + I for the given matrix A where A = [[1, 2, 2], [2, 1, 2], [2, 2, 1]].

Solution

The matrix in the image is given as:

1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$ You are asked to compute $$A^2 + A + I$$, where $$A^2$$ is the square of the matrix, $$A$$ is the original matrix, and $$I$$ is the identity matrix of the same size. ### Step-by-step Solution: 1. **Matrix $$A$$** is already given: $$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$ 2. **Find $$A^2$$ (matrix multiplication):** We compute the product of $$A \cdot A$$: $$A^2 = A \cdot A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$ We will multiply the matrices now. $$A^2 = \begin{pmatrix} (1 \times 1) + (2 \times 2) + (2 \times 2) & (1 \times 2) + (2 \times 1) + (2 \times 2) & (1 \times 2) + (2 \times 2) + (2 \times 1) \\ (2 \times 1) + (1 \times 2) + (2 \times 2) & (2 \times 2) + (1 \times 1) + (2 \times 2) & (2 \times 2) + (1 \times 2) + (2 \times 1) \\ (2 \times 1) + (2 \times 2) + (1 \times 2) & (2 \times 2) + (2 \times 1) + (1 \times 2) & (2 \times 2) + (2 \times 2) + (1 \times 1) \end{pmatrix}$$ Simplifying: $$A^2 = \begin{pmatrix} 1 + 4 + 4 & 2 + 2 + 4 & 2 + 4 + 2 \\ 2 + 2 + 4 & 4 + 1 + 4 & 4 + 2 + 2 \\ 2 + 4 + 2 & 4 + 2 + 2 & 4 + 4 + 1 \end{pmatrix} = \begin{pmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{pmatrix}$$ So, $$A^2 = \begin{pmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{pmatrix}$$. 3. **Identity matrix $$I$$** (since $$A$$ is 3x3, we use a 3x3 identity matrix): $$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$ 4. **Add $$A^2$$, $$A$$, and $$I$$:** $$A^2 + A + I = \begin{pmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{pmatrix} + \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$ First, sum $$A^2 + A$$: $$A^2 + A = \begin{pmatrix} 9+1 & 8+2 & 8+2 \\ 8+2 & 9+1 & 8+2 \\ 8+2 & 8+2 & 9+1 \end{pmatrix} = \begin{pmatrix} 10 & 10 & 10 \\ 10 & 10 & 10 \\ 10 & 10 & 10 \end{pmatrix}$$ Then, sum the result with $$I$$: $$A^2 + A + I = \begin{pmatrix} 10+1 & 10+0 & 10+0 \\ 10+0 & 10+1 & 10+0 \\ 10+0 & 10+0 & 10+1 \end{pmatrix} = \begin{pmatrix} 11 & 10 & 10 \\ 10 & 11 & 10 \\ 10 & 10 & 11 \end{pmatrix}$$ ### Final result: $$A^2 + A + I = \begin{pmatrix} 11 & 10 & 10 \\ 10 & 11 & 10 \\ 10 & 10 & 11 \end{pmatrix}$$ Would you like a further breakdown or have any other questions? ### Relative questions: 1. How is matrix multiplication performed? 2. What is the significance of the identity matrix in matrix algebra? 3. Can we diagonalize the given matrix $$A$$? 4. How do eigenvalues relate to matrix powers? 5. What properties does the resulting matrix exhibit? ### Tip: When performing matrix operations, double-check each row and column operation to avoid mistakes in addition and multiplication steps.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Operations
Matrix Multiplication
Matrix Addition
Identity Matrix

Formulas

Matrix Multiplication Formula: C = AB
Identity Matrix Addition: A + I

Theorems

Properties of Identity Matrix
Matrix Multiplication Associativity

Suitable Grade Level

Grades 10-12