Math Problem Statement

Diketahui A = [3, -4; 2, 1], B = [-3, 5; -2, 1], C = [5, -2; -4, -1]. Tentukan 3A^T - B + 2C !

Solution

You've uploaded a problem set containing matrix-related questions. I will help with the first question and provide detailed solutions. The first question asks:

1. Diketahui: A=[3421],B=[3521],C=[5241]A = \begin{bmatrix} 3 & -4 \\ 2 & 1 \end{bmatrix}, B = \begin{bmatrix} -3 & 5 \\ -2 & 1 \end{bmatrix}, C = \begin{bmatrix} 5 & -2 \\ -4 & -1 \end{bmatrix}

Find: 3ATB+2C3A^T - B + 2C

Steps to solve:

  1. Transpose of A (A^T): AT=[3241]A^T = \begin{bmatrix} 3 & 2 \\ -4 & 1 \end{bmatrix}

  2. Multiply ATA^T by 3: 3AT=3×[3241]=[96123]3A^T = 3 \times \begin{bmatrix} 3 & 2 \\ -4 & 1 \end{bmatrix} = \begin{bmatrix} 9 & 6 \\ -12 & 3 \end{bmatrix}

  3. Multiply C by 2: 2C=2×[5241]=[10482]2C = 2 \times \begin{bmatrix} 5 & -2 \\ -4 & -1 \end{bmatrix} = \begin{bmatrix} 10 & -4 \\ -8 & -2 \end{bmatrix}

  4. Now, compute 3ATB+2C3A^T - B + 2C: B=[3521]B = \begin{bmatrix} -3 & 5 \\ -2 & 1 \end{bmatrix}

    Perform the subtraction and addition: 3ATB=[96123][3521]=[121102]3A^T - B = \begin{bmatrix} 9 & 6 \\ -12 & 3 \end{bmatrix} - \begin{bmatrix} -3 & 5 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 12 & 1 \\ -10 & 2 \end{bmatrix} Then: 3ATB+2C=[121102]+[10482]=[223180]3A^T - B + 2C = \begin{bmatrix} 12 & 1 \\ -10 & 2 \end{bmatrix} + \begin{bmatrix} 10 & -4 \\ -8 & -2 \end{bmatrix} = \begin{bmatrix} 22 & -3 \\ -18 & 0 \end{bmatrix}

The final result is: 3ATB+2C=[223180]3A^T - B + 2C = \begin{bmatrix} 22 & -3 \\ -18 & 0 \end{bmatrix}

Would you like a detailed explanation for the next question or clarification on this one?

Here are 5 related questions you might explore:

  1. How do you find the inverse of a 2x2 matrix?
  2. What are the properties of matrix addition and scalar multiplication?
  3. How does transposing a matrix affect its properties?
  4. Can every matrix be inverted? If not, why?
  5. What is the geometric interpretation of matrix multiplication?

Tip: Always check if matrices are compatible in size before performing operations like addition and multiplication.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Transposition
Matrix Addition
Scalar Multiplication
Matrix Subtraction

Formulas

A^T (Transpose of A)
Matrix Addition: A + B
Matrix Subtraction: A - B
Scalar Multiplication: kA

Theorems

Matrix Properties
Matrix Operations

Suitable Grade Level

Grades 10-12