Math Problem Statement

Diketahui A = [[3, -4], [2, 1]], B = [[-3, -2], [-1, 5]], dan C = [[5, 4], [-2, -1]]. Tentukan 2A - B + 3C^T !

Solution

Let's start by solving question 1 from the uploaded image.

Question 1

Given matrices: A=[3421],B=[3215],C=[5421]A = \begin{bmatrix} 3 & -4 \\ 2 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} -3 & -2 \\ -1 & 5 \end{bmatrix}, \quad C = \begin{bmatrix} 5 & 4 \\ -2 & -1 \end{bmatrix}

Find 2AB+3CT2A - B + 3C^T.

  1. Calculate 2A2A:

2A=2×[3421]=[6842]2A = 2 \times \begin{bmatrix} 3 & -4 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 6 & -8 \\ 4 & 2 \end{bmatrix}

  1. Calculate B-B:

B=[3215]-B = \begin{bmatrix} 3 & 2 \\ 1 & -5 \end{bmatrix}

  1. Calculate 3CT3C^T (Transpose of CC):

CT=[5241]C^T = \begin{bmatrix} 5 & -2 \\ 4 & -1 \end{bmatrix} 3CT=3×[5241]=[156123]3C^T = 3 \times \begin{bmatrix} 5 & -2 \\ 4 & -1 \end{bmatrix} = \begin{bmatrix} 15 & -6 \\ 12 & -3 \end{bmatrix}

  1. Combine all parts:

2AB+3CT=[6842]+[3215]+[156123]2A - B + 3C^T = \begin{bmatrix} 6 & -8 \\ 4 & 2 \end{bmatrix} + \begin{bmatrix} 3 & 2 \\ 1 & -5 \end{bmatrix} + \begin{bmatrix} 15 & -6 \\ 12 & -3 \end{bmatrix}

Adding all these matrices element-wise:

2AB+3CT=[6+3+158+264+1+12253]2A - B + 3C^T = \begin{bmatrix} 6 + 3 + 15 & -8 + 2 - 6 \\ 4 + 1 + 12 & 2 - 5 - 3 \end{bmatrix} =[2412176]= \begin{bmatrix} 24 & -12 \\ 17 & -6 \end{bmatrix}

So, the final result is:

2AB+3CT=[2412176]2A - B + 3C^T = \begin{bmatrix} 24 & -12 \\ 17 & -6 \end{bmatrix}

Would you like further details or have any questions on this?

Related Questions:

  1. What is the inverse of matrix AA?
  2. Calculate the determinant of matrix BB.
  3. Find the eigenvalues of matrix CC.
  4. Determine if matrix AA is orthogonal.
  5. Find the product ABAB.

Tip: Always check the dimensions of matrices before performing operations like multiplication or addition.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Operations
Matrix Transposition
Matrix Addition
Matrix Multiplication

Formulas

Matrix Addition: A + B = [[a11 + b11, a12 + b12], [a21 + b21, a22 + b22]]
Matrix Subtraction: A - B = [[a11 - b11, a12 - b12], [a21 - b21, a22 - b22]]
Matrix Multiplication by Scalar: kA = k * A
Matrix Transposition: A^T = [[a11, a21], [a12, a22]]

Theorems

Properties of Matrix Addition and Scalar Multiplication

Suitable Grade Level

Grade 10-12