Math Problem Statement

Answer everything following the instructions

Matrix multiplication and transformations involving matrices A, B, C, D, E, and F, with operations focusing on reconstructing matrices and applying matrix multiplication rules.

Solution

In the image you uploaded, there appear to be multiple questions related to matrix algebra, specifically matrix multiplication and transformation. The instructions suggest reconstructing matrices by following certain rules. Let's walk through each part.

1. General Matrix Multiplication Rules

  • The questions ask for matrix multiplication and transformations. When multiplying matrices, the number of columns in the first matrix must equal the number of rows in the second matrix.

2. Reconstructing Matrices

The problem also involves reconstructing matrices by following the examples.

Let's go step-by-step to work through the solution:

1. Problem a)

You are given two matrices AA and BB:

  • A=(2301)A = \begin{pmatrix} 2 & 3 \\ 0 & -1 \end{pmatrix}
  • B=(1234)B = \begin{pmatrix} -1 & 2 \\ 3 & 4 \end{pmatrix}

To multiply these matrices A×BA \times B: A×B=(2301)×(1234)A \times B = \begin{pmatrix} 2 & 3 \\ 0 & -1 \end{pmatrix} \times \begin{pmatrix} -1 & 2 \\ 3 & 4 \end{pmatrix}

We perform the matrix multiplication by taking the dot product of rows from AA and columns from BB: =((2×1+3×3)(2×2+3×4)(0×1+1×3)(0×2+1×4))= \begin{pmatrix} (2 \times -1 + 3 \times 3) & (2 \times 2 + 3 \times 4) \\ (0 \times -1 + -1 \times 3) & (0 \times 2 + -1 \times 4) \end{pmatrix}

= \begin{pmatrix} 7 & 16 \\ -3 & -4 \end{pmatrix}$$ #### 2. Problem b) Similar to part (a), we have: - $$C = \begin{pmatrix} 1 & -2 \\ 4 & 0 \end{pmatrix}$$ - $$D = \begin{pmatrix} 2 & 3 \\ 5 & 6 \end{pmatrix}$$ To calculate $$C \times D$$: $$C \times D = \begin{pmatrix} 1 & -2 \\ 4 & 0 \end{pmatrix} \times \begin{pmatrix} 2 & 3 \\ 5 & 6 \end{pmatrix}$$ We apply the matrix multiplication: $$= \begin{pmatrix} (1 \times 2 + -2 \times 5) & (1 \times 3 + -2 \times 6) \\ (4 \times 2 + 0 \times 5) & (4 \times 3 + 0 \times 6) \end{pmatrix}$$ $$= \begin{pmatrix} (2 - 10) & (3 - 12) \\ (8 + 0) & (12 + 0) \end{pmatrix} = \begin{pmatrix} -8 & -9 \\ 8 & 12 \end{pmatrix}$$ #### 3. Problem c) Similarly: - $$E = \begin{pmatrix} 0 & 1 \\ -1 & 3 \end{pmatrix}$$ - $$F = \begin{pmatrix} 2 & 1 \\ 0 & 4 \end{pmatrix}$$ We compute $$E \times F$$: \[ E \times F = \begin{pmatrix} 0 & 1 \\ -1 & 3 \end{pmatrix} \times \begin{pmatrix} 2 & 1 \\ 0 & 4 \end

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Multiplication
Linear Algebra

Formulas

Matrix multiplication rule: The element in the ith row and jth column of the product matrix is the dot product of the ith row of the first matrix and the jth column of the second matrix.

Theorems

-

Suitable Grade Level

Undergraduate (Linear Algebra)