Math Problem Statement

Consider the following. C =

2 −4 12

0 6 −12 1 −2 3 and D = 1 6

1 2 4

2 1 −4 1 0 −2 , Find CD.

Find DC.

Solution

We are tasked with finding the matrix products CDCD and DCDC, where the given matrices CC and DD are as follows:

2 & -4 & 12 \\ 0 & 6 & -12 \\ 1 & -2 & 3 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 1 & 6 & 1 \\ 2 & 4 & 2 \\ 1 & 0 & -2 \end{bmatrix}$$ ### Step 1: Find $$CD$$ (Matrix multiplication $$C \times D$$) Matrix multiplication is performed by taking the dot product of rows of $$C$$ with columns of $$D$$. $$CD = \begin{bmatrix} (2)(1) + (-4)(2) + (12)(1) & (2)(6) + (-4)(4) + (12)(0) & (2)(1) + (-4)(2) + (12)(-2) \\ (0)(1) + (6)(2) + (-12)(1) & (0)(6) + (6)(4) + (-12)(0) & (0)(1) + (6)(2) + (-12)(-2) \\ (1)(1) + (-2)(2) + (3)(1) & (1)(6) + (-2)(4) + (3)(0) & (1)(1) + (-2)(2) + (3)(-2) \end{bmatrix}$$ Now, calculate each element: $$CD = \begin{bmatrix} 2 - 8 + 12 & 12 - 16 + 0 & 2 - 8 - 24 \\ 0 + 12 - 12 & 0 + 24 + 0 & 0 + 12 + 24 \\ 1 - 4 + 3 & 6 - 8 + 0 & 1 - 4 - 6 \end{bmatrix} = \begin{bmatrix} 6 & -4 & -30 \\ 0 & 24 & 36 \\ 0 & -2 & -9 \end{bmatrix}$$ ### Step 2: Find $$DC$$ (Matrix multiplication $$D \times C$$) Now, calculate $$D \times C$$ by multiplying rows of $$D$$ by columns of $$C$$. $$DC = \begin{bmatrix} (1)(2) + (6)(0) + (1)(1) & (1)(-4) + (6)(6) + (1)(-2) & (1)(12) + (6)(-12) + (1)(3) \\ (2)(2) + (4)(0) + (2)(1) & (2)(-4) + (4)(6) + (2)(-2) & (2)(12) + (4)(-12) + (2)(3) \\ (1)(2) + (0)(0) + (-2)(1) & (1)(-4) + (0)(6) + (-2)(-2) & (1)(12) + (0)(-12) + (-2)(3) \end{bmatrix}$$ Now, calculate each element: $$DC = \begin{bmatrix} 2 + 0 + 1 & -4 + 36 - 2 & 12 - 72 + 3 \\ 4 + 0 + 2 & -8 + 24 - 4 & 24 - 48 + 6 \\ 2 + 0 - 2 & -4 + 0 + 4 & 12 + 0 - 6 \end{bmatrix} = \begin{bmatrix} 3 & 30 & -57 \\ 6 & 12 & -18 \\ 0 & 0 & 6 \end{bmatrix}$$ ### Final Answers: $$CD = \begin{bmatrix} 6 & -4 & -30 \\ 0 & 24 & 36 \\ 0 & -2 & -9 \end{bmatrix} \quad \text{and} \quad DC = \begin{bmatrix} 3 & 30 & -57 \\ 6 & 12 & -18 \\ 0 & 0 & 6 \end{bmatrix}$$ Would you like any further clarifications or detailed explanations? --- Here are five related questions to expand your understanding: 1. What are the conditions for matrix multiplication to be valid? 2. How does the size of the resulting matrix in a multiplication depend on the original matrices? 3. What are the key differences between $$AB$$ and $$BA$$ for non-square matrices? 4. How does matrix multiplication relate to linear transformations? 5. How can you interpret matrix multiplication in terms of row and column operations? **Tip:** Matrix multiplication is not commutative, meaning $$AB \neq BA$$ in most cases!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Multiplication
Linear Algebra

Formulas

Matrix multiplication formula (dot product of rows and columns)

Theorems

Associative property of matrix multiplication

Suitable Grade Level

Grades 11-12