Math Problem Statement

Jika \begin{pmatrix} 5 & 7 \\ -1 & -5 \end{pmatrix} + 2 \begin{pmatrix} -1 & 4 \\ 2 & -2 \end{pmatrix} - 3Q = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, jumlah dari semua elemen pada matriks Q adalah...

Solution

Let's analyze the problem presented in the image.

The equation in question is:

(5715)+2(1422)3Q=(0000)\begin{pmatrix} 5 & 7 \\ -1 & -5 \end{pmatrix} + 2 \begin{pmatrix} -1 & 4 \\ 2 & -2 \end{pmatrix} - 3Q = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}

We are tasked with finding the sum of all elements in the matrix QQ.

Step 1: Simplifying the equation

We begin by simplifying the expression on the left-hand side of the equation.

Multiply the second matrix by 2:

2(1422)=(2×(1)2×42×22×(2))=(2844)2 \begin{pmatrix} -1 & 4 \\ 2 & -2 \end{pmatrix} = \begin{pmatrix} 2 \times (-1) & 2 \times 4 \\ 2 \times 2 & 2 \times (-2) \end{pmatrix} = \begin{pmatrix} -2 & 8 \\ 4 & -4 \end{pmatrix}

Now the equation becomes: (5715)+(2844)3Q=(0000)\begin{pmatrix} 5 & 7 \\ -1 & -5 \end{pmatrix} + \begin{pmatrix} -2 & 8 \\ 4 & -4 \end{pmatrix} - 3Q = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}

Step 2: Add the two matrices:

(5715)+(2844)=(5+(2)7+81+45+(4))=(31539)\begin{pmatrix} 5 & 7 \\ -1 & -5 \end{pmatrix} + \begin{pmatrix} -2 & 8 \\ 4 & -4 \end{pmatrix} = \begin{pmatrix} 5 + (-2) & 7 + 8 \\ -1 + 4 & -5 + (-4) \end{pmatrix} = \begin{pmatrix} 3 & 15 \\ 3 & -9 \end{pmatrix}

Now the equation becomes: (31539)3Q=(0000)\begin{pmatrix} 3 & 15 \\ 3 & -9 \end{pmatrix} - 3Q = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}

Step 3: Solve for QQ

To isolate QQ, move 3Q3Q to the right-hand side: (31539)=3Q\begin{pmatrix} 3 & 15 \\ 3 & -9 \end{pmatrix} = 3Q

Now, divide both sides of the equation by 3 to solve for QQ: Q=13(31539)=(1513)Q = \frac{1}{3} \begin{pmatrix} 3 & 15 \\ 3 & -9 \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ 1 & -3 \end{pmatrix}

Step 4: Find the sum of all elements in matrix QQ

The sum of the elements in matrix QQ is: 1+5+1+(3)=41 + 5 + 1 + (-3) = 4

Thus, the sum of all elements in matrix QQ is 4.

Final Answer:

The correct answer is B. 4.


Do you want any further details or explanations?

Here are 5 related questions for practice:

  1. If A+B2C=0A + B - 2C = 0, how would you solve for CC?
  2. What is the determinant of the matrix (1513)\begin{pmatrix} 1 & 5 \\ 1 & -3 \end{pmatrix}?
  3. How do you perform scalar multiplication on a matrix?
  4. What is the trace of a matrix, and how is it calculated?
  5. How can matrix inversion be used to solve systems of linear equations?

Tip: When solving matrix equations, remember that scalar multiplication distributes across each element in the matrix.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Algebra
Scalar Multiplication
Matrix Equation Solving

Formulas

Matrix Addition
Scalar Multiplication of Matrices
Isolating Matrix Variable

Theorems

-

Suitable Grade Level

Grades 9-12