Math Problem Statement
If \begin{bmatrix} 11&2\ 7&13 \end{bmatrix}\cdot G= \begin{bmatrix} \dfrac{-5}{4}&14\ \dfrac{-97}{4}&91 \end{bmatrix}, then G=\begin{bmatrix} g_{1}&g_{2}\ g_{3}&g_{4} \end{bmatrix}.
What is the value of g_{2}?
(It's okay to use a calculator to find the necessary inverse and multiply.)
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Linear Algebra
Matrix Multiplication
Matrix Inverse
Formulas
Inverse of a 2x2 matrix: \( A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \)
Matrix multiplication: \( C = A \cdot B \)
Theorems
Inverse Matrix Theorem
Suitable Grade Level
College-level Linear Algebra