Math Problem Statement

If \begin{bmatrix} 11&2\ 7&13 \end{bmatrix}\cdot G= \begin{bmatrix} \dfrac{-5}{4}&14\ \dfrac{-97}{4}&91 \end{bmatrix}, then G=\begin{bmatrix} g_{1}&g_{2}\ g_{3}&g_{4} \end{bmatrix}.

What is the value of g_{2}?

(It's okay to use a calculator to find the necessary inverse and multiply.)

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Matrix Multiplication
Matrix Inverse

Formulas

Inverse of a 2x2 matrix: \( A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \)
Matrix multiplication: \( C = A \cdot B \)

Theorems

Inverse Matrix Theorem

Suitable Grade Level

College-level Linear Algebra