Math Problem Statement

Given matrices A and B, find det(A · B) where A = [[1, 0, -1], [0, 3, 1], [2, 2, -1]] and B = [[3, 0, -1], [1, 3, 1], [2, 0, -1]].

Solution

The problem asks for det(AB)\det(A \cdot B), where matrices AA and BB are provided. Here's how we solve it:

Key Property:

det(AB)=det(A)det(B)\det(A \cdot B) = \det(A) \cdot \det(B)

Thus, we need to compute det(A)\det(A) and det(B)\det(B) first.

Step 1: Compute det(A)\det(A)

Matrix AA is: A=(101031221).A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 3 & 1 \\ 2 & 2 & -1 \end{pmatrix}. The determinant is computed as: det(A)=1det(3121)0det(0121)+(1)det(0322).\det(A) = 1 \cdot \det\begin{pmatrix} 3 & 1 \\ 2 & -1 \end{pmatrix} - 0 \cdot \det\begin{pmatrix} 0 & 1 \\ 2 & -1 \end{pmatrix} + (-1) \cdot \det\begin{pmatrix} 0 & 3 \\ 2 & 2 \end{pmatrix}.

Compute minors:

  1. det(3121)=(3)(1)(1)(2)=32=5\det\begin{pmatrix} 3 & 1 \\ 2 & -1 \end{pmatrix} = (3)(-1) - (1)(2) = -3 - 2 = -5,
  2. det(0322)=(0)(2)(3)(2)=06=6\det\begin{pmatrix} 0 & 3 \\ 2 & 2 \end{pmatrix} = (0)(2) - (3)(2) = 0 - 6 = -6.

Substitute back:

det(A)=1(5)+0(anything)+(1)(6)=5+6=1.\det(A) = 1 \cdot (-5) + 0 \cdot (\text{anything}) + (-1) \cdot (-6) = -5 + 6 = 1.

Step 2: Compute det(B)\det(B)

Matrix BB is: B=(301131201).B = \begin{pmatrix} 3 & 0 & -1 \\ 1 & 3 & 1 \\ 2 & 0 & -1 \end{pmatrix}. The determinant is: det(B)=3det(3101)0det(1121)+(1)det(1320).\det(B) = 3 \cdot \det\begin{pmatrix} 3 & 1 \\ 0 & -1 \end{pmatrix} - 0 \cdot \det\begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} + (-1) \cdot \det\begin{pmatrix} 1 & 3 \\ 2 & 0 \end{pmatrix}.

Compute minors:

  1. det(3101)=(3)(1)(1)(0)=3\det\begin{pmatrix} 3 & 1 \\ 0 & -1 \end{pmatrix} = (3)(-1) - (1)(0) = -3,
  2. det(1320)=(1)(0)(3)(2)=06=6\det\begin{pmatrix} 1 & 3 \\ 2 & 0 \end{pmatrix} = (1)(0) - (3)(2) = 0 - 6 = -6.

Substitute back:

det(B)=3(3)+0(anything)+(1)(6)=9+6=3.\det(B) = 3 \cdot (-3) + 0 \cdot (\text{anything}) + (-1) \cdot (-6) = -9 + 6 = -3.

Step 3: Compute det(AB)\det(A \cdot B)

Using the property det(AB)=det(A)det(B)\det(A \cdot B) = \det(A) \cdot \det(B): det(AB)=det(A)det(B)=(1)(3)=3.\det(A \cdot B) = \det(A) \cdot \det(B) = (1) \cdot (-3) = -3.

Final Answer:

3\boxed{-3}

Would you like further clarification or a detailed breakdown? Here are related questions for practice:

  1. How do you compute determinants of 4×44 \times 4 matrices?
  2. What are the properties of determinants under matrix addition?
  3. How does the determinant change when a row is multiplied by a scalar?
  4. How can you compute determinants using cofactor expansion along different rows?
  5. How does row reduction affect the determinant of a matrix?

Tip: Always simplify the matrix using row/column operations to make determinant computation easier.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Matrix Determinants
Matrix Multiplication

Formulas

det(A · B) = det(A) · det(B)
Cofactor expansion for determinant computation

Theorems

Determinant of the product of matrices

Suitable Grade Level

Undergraduate or Advanced High School (Grades 11-12)