Math Problem Statement

Find determinant of A by expanding the first column, and evaluate (A^2 - B^T)C.

Solution

Let's break down the questions based on the image provided:

1. Find the determinant of matrix AA by expanding the first column.

The matrix AA is: A=(1341324109)A = \begin{pmatrix} 1 & 3 & 4 \\ 1 & 3 & 2 \\ 4 & 10 & 9 \end{pmatrix} We will expand along the first column to compute the determinant.

det(A)=1det(32109)1det(34109)+4det(3432)\text{det}(A) = 1 \cdot \text{det}\begin{pmatrix} 3 & 2 \\ 10 & 9 \end{pmatrix} - 1 \cdot \text{det}\begin{pmatrix} 3 & 4 \\ 10 & 9 \end{pmatrix} + 4 \cdot \text{det}\begin{pmatrix} 3 & 4 \\ 3 & 2 \end{pmatrix} Now, we'll compute the 2x2 determinants.

2. Evaluate (A2BT)C(A^2 - B^T)C.

The matrices provided are: A=(1341324109),B=(7136172220),C=(112)A = \begin{pmatrix} 1 & 3 & 4 \\ 1 & 3 & 2 \\ 4 & 10 & 9 \end{pmatrix}, \quad B = \begin{pmatrix} 7 & 13 & -6 \\ -1 & -7 & 2 \\ -2 & 2 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}

  1. Compute A2=A×AA^2 = A \times A.
  2. Find the transpose of BB, i.e., BTB^T.
  3. Compute A2BTA^2 - B^T.
  4. Finally, multiply the result by CC.

Let me go ahead and calculate both of these steps.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Determinant
Matrix Multiplication
Matrix Transpose
Matrix-Vector Multiplication

Formulas

Determinant of a 3x3 matrix: det(A) = a(ei − fh) − b(di − fg) + c(dh − eg)
Matrix Multiplication: (AB)_{ij} = ∑ A_{ik}B_{kj}
Matrix Transpose: (B^T)_{ij} = B_{ji}
Matrix-Vector Multiplication: (AC)_i = ∑ A_{ij}C_j

Theorems

Determinant Expansion
Properties of Transpose

Suitable Grade Level

University Level (Linear Algebra)