Math Problem Statement

Selesaikan tugas ini dengan caranya

Tentukan determinan dari matriks B = ((-1, 0, 2), (3, 1, -2), (-9, 5, 10))

Solution

The matrix provided in the image is:

B=(1023129510)B = \begin{pmatrix} -1 & 0 & 2 \\ 3 & 1 & -2 \\ -9 & 5 & 10 \end{pmatrix}

To find the determinant of this 3x3 matrix BB, we can use the cofactor expansion along the first row. The determinant of a 3x3 matrix is given by:

det(B)=(1)det(12510)0det(32910)+2det(3195)\text{det}(B) = (-1) \cdot \text{det} \begin{pmatrix} 1 & -2 \\ 5 & 10 \end{pmatrix} - 0 \cdot \text{det} \begin{pmatrix} 3 & -2 \\ -9 & 10 \end{pmatrix} + 2 \cdot \text{det} \begin{pmatrix} 3 & 1 \\ -9 & 5 \end{pmatrix}

Step 1: Calculate each 2x2 determinant

  1. det(12510)=(1)(10)(2)(5)=10+10=20\text{det} \begin{pmatrix} 1 & -2 \\ 5 & 10 \end{pmatrix} = (1)(10) - (-2)(5) = 10 + 10 = 20

  2. The second term will be zero, because the cofactor's multiplier is zero.

  3. det(3195)=(3)(5)(1)(9)=15+9=24\text{det} \begin{pmatrix} 3 & 1 \\ -9 & 5 \end{pmatrix} = (3)(5) - (1)(-9) = 15 + 9 = 24

Step 2: Substitute into the cofactor expansion

det(B)=(1)(20)+0+2(24)=20+48=28\text{det}(B) = (-1)(20) + 0 + 2(24) = -20 + 48 = 28

Thus, the determinant of matrix BB is 28\boxed{28}.

Would you like a more detailed explanation or have any other questions?

Here are five related questions you might find interesting:

  1. How do we apply cofactor expansion for larger matrices (4x4 or more)?
  2. What are some properties of determinants that simplify calculations?
  3. How is the determinant useful in solving systems of linear equations?
  4. How does the determinant change when you swap two rows of a matrix?
  5. What is the geometrical interpretation of the determinant?

Tip: The determinant of a matrix tells us about the volume scaling factor and whether the transformation is orientation-preserving (positive determinant) or reversing (negative determinant).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Algebra
Determinants
Cofactor Expansion

Formulas

det(A) = a(ei − fh) − b(di − fg) + c(dh − eg)
determinant of 2x2 matrix: det = ad - bc

Theorems

Cofactor Expansion
Properties of Determinants

Suitable Grade Level

Grades 10-12