Given the matrix A as follows:
A=0−cbc00−ba−a
We are tasked with finding A3−A(a2+b2+c2).
Step 1: Matrix Multiplication - A2
To compute A3, we first need A2.
A2=A⋅A
A2=0−cbc00−ba−a⋅0−cbc00−ba−a
Performing matrix multiplication:
A2=−(b2+c2)000−(a2+c2)000−(a2+b2)
Step 2: Matrix Multiplication - A3
Now, compute A3=A⋅A2:
A3=0−cbc00−ba−a⋅−(b2+c2)000−(a2+c2)000−(a2+b2)
Performing matrix multiplication:
A3=0(a2+c2)c−(a2+b2)b−(a2+c2)c0(a2+b2)a(a2+b2)b−(a2+b2)a0
Step 3: Compute A(a2+b2+c2)
Next, calculate A(a2+b2+c2), where A is multiplied by the scalar a2+b2+c2:
A(a2+b2+c2)=(a2+b2+c2)⋅0−cbc00−ba−a
This yields:
A(a2+b2+c2)=0−(a2+b2+c2)c(a2+b2+c2)b(a2+b2+c2)c0−(a2+b2+c2)a−(a2+b2+c2)b(a2+b2+c2)a0
Step 4: Compute A3−A(a2+b2+c2)
Finally, subtract A(a2+b2+c2) from A3:
A3−A(a2+b2+c2)=0(a2+c2)c−(a2+b2)b−(a2+c2)c0(a2+b2)a(a2+b2)b−(a2+b2)a0−0−(a2+b2+c2)c(a2+b2+c2)b(a2+b2+c2)c0−(a2+b2+c2)a−(a2+b2+c2)b(a2+b2+c2)a0
This simplifies to:
A3−A(a2+b2+c2)=02c3−2b3−2c302a32b3−2a30
Thus, the final result is:
A3−A(a2+b2+c2)=02c3−2b3−2c302a32b3−2a30
Let me know if you want more details or have any questions!
Related Questions:
- What is the geometric interpretation of a skew-symmetric matrix like A?
- How do the eigenvalues of skew-symmetric matrices behave?
- Can you explain the properties of cubic powers of matrices?
- How does the Cayley-Hamilton theorem apply to skew-symmetric matrices?
- What are the applications of matrices like A in physics?
Tip:
For skew-symmetric matrices like A, all the eigenvalues are purely imaginary or zero.