Math Problem Statement

Find output of A³-A(a²+b²+c²). A=[[0,c,-b],[-c,0,a],[b,0,-a]

Solution

Given the matrix AA as follows:

A=[0cbc0ab0a]A = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & 0 & -a \end{bmatrix}

We are tasked with finding A3A(a2+b2+c2)A^3 - A(a^2 + b^2 + c^2).

Step 1: Matrix Multiplication - A2A^2

To compute A3A^3, we first need A2A^2.

A2=AAA^2 = A \cdot A A2=[0cbc0ab0a][0cbc0ab0a]A^2 = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & 0 & -a \end{bmatrix} \cdot \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & 0 & -a \end{bmatrix} Performing matrix multiplication:

A2=[(b2+c2)000(a2+c2)000(a2+b2)]A^2 = \begin{bmatrix} -(b^2 + c^2) & 0 & 0 \\ 0 & -(a^2 + c^2) & 0 \\ 0 & 0 & -(a^2 + b^2) \end{bmatrix}

Step 2: Matrix Multiplication - A3A^3

Now, compute A3=AA2A^3 = A \cdot A^2:

A3=[0cbc0ab0a][(b2+c2)000(a2+c2)000(a2+b2)]A^3 = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & 0 & -a \end{bmatrix} \cdot \begin{bmatrix} -(b^2 + c^2) & 0 & 0 \\ 0 & -(a^2 + c^2) & 0 \\ 0 & 0 & -(a^2 + b^2) \end{bmatrix} Performing matrix multiplication:

A3=[0(a2+c2)c(a2+b2)b(a2+c2)c0(a2+b2)a(a2+b2)b(a2+b2)a0]A^3 = \begin{bmatrix} 0 & -(a^2 + c^2)c & (a^2 + b^2)b \\ (a^2 + c^2)c & 0 & -(a^2 + b^2)a \\ -(a^2 + b^2)b & (a^2 + b^2)a & 0 \end{bmatrix}

Step 3: Compute A(a2+b2+c2)A(a^2 + b^2 + c^2)

Next, calculate A(a2+b2+c2)A(a^2 + b^2 + c^2), where AA is multiplied by the scalar a2+b2+c2a^2 + b^2 + c^2:

A(a2+b2+c2)=(a2+b2+c2)[0cbc0ab0a]A(a^2 + b^2 + c^2) = (a^2 + b^2 + c^2) \cdot \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & 0 & -a \end{bmatrix} This yields:

A(a2+b2+c2)=[0(a2+b2+c2)c(a2+b2+c2)b(a2+b2+c2)c0(a2+b2+c2)a(a2+b2+c2)b(a2+b2+c2)a0]A(a^2 + b^2 + c^2) = \begin{bmatrix} 0 & (a^2 + b^2 + c^2)c & -(a^2 + b^2 + c^2)b \\ -(a^2 + b^2 + c^2)c & 0 & (a^2 + b^2 + c^2)a \\ (a^2 + b^2 + c^2)b & -(a^2 + b^2 + c^2)a & 0 \end{bmatrix}

Step 4: Compute A3A(a2+b2+c2)A^3 - A(a^2 + b^2 + c^2)

Finally, subtract A(a2+b2+c2)A(a^2 + b^2 + c^2) from A3A^3:

A3A(a2+b2+c2)=[0(a2+c2)c(a2+b2)b(a2+c2)c0(a2+b2)a(a2+b2)b(a2+b2)a0][0(a2+b2+c2)c(a2+b2+c2)b(a2+b2+c2)c0(a2+b2+c2)a(a2+b2+c2)b(a2+b2+c2)a0]A^3 - A(a^2 + b^2 + c^2) = \begin{bmatrix} 0 & -(a^2 + c^2)c & (a^2 + b^2)b \\ (a^2 + c^2)c & 0 & -(a^2 + b^2)a \\ -(a^2 + b^2)b & (a^2 + b^2)a & 0 \end{bmatrix} - \begin{bmatrix} 0 & (a^2 + b^2 + c^2)c & -(a^2 + b^2 + c^2)b \\ -(a^2 + b^2 + c^2)c & 0 & (a^2 + b^2 + c^2)a \\ (a^2 + b^2 + c^2)b & -(a^2 + b^2 + c^2)a & 0 \end{bmatrix}

This simplifies to:

A3A(a2+b2+c2)=[02c32b32c302a32b32a30]A^3 - A(a^2 + b^2 + c^2) = \begin{bmatrix} 0 & -2c^3 & 2b^3 \\ 2c^3 & 0 & -2a^3 \\ -2b^3 & 2a^3 & 0 \end{bmatrix}

Thus, the final result is:

A3A(a2+b2+c2)=[02c32b32c302a32b32a30]A^3 - A(a^2 + b^2 + c^2) = \begin{bmatrix} 0 & -2c^3 & 2b^3 \\ 2c^3 & 0 & -2a^3 \\ -2b^3 & 2a^3 & 0 \end{bmatrix}

Let me know if you want more details or have any questions!

Related Questions:

  1. What is the geometric interpretation of a skew-symmetric matrix like AA?
  2. How do the eigenvalues of skew-symmetric matrices behave?
  3. Can you explain the properties of cubic powers of matrices?
  4. How does the Cayley-Hamilton theorem apply to skew-symmetric matrices?
  5. What are the applications of matrices like AA in physics?

Tip:

For skew-symmetric matrices like AA, all the eigenvalues are purely imaginary or zero.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Algebra
Matrix Multiplication
Skew-Symmetric Matrices

Formulas

Matrix Multiplication: (AB)_{ij} = Σ A_{ik} B_{kj}
A^3 - A(a^2 + b^2 + c^2)
Properties of Skew-Symmetric Matrices: A^T = -A

Theorems

Cayley-Hamilton Theorem

Suitable Grade Level

University Level (Advanced Linear Algebra)