Math Problem Statement

Find the output of A³-A(a²+b²+c²). A=[[0,c,-b],[-c,0,a],[b,-a,0]]

Solution

We are given the matrix AA and need to compute A3A(a2+b2+c2)A^3 - A(a^2 + b^2 + c^2), where:

A=(0cbc0aba0)A = \begin{pmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{pmatrix}

Step 1: Calculate A2A^2

First, compute the square of matrix AA (i.e., A×AA \times A):

A2=(0cbc0aba0)×(0cbc0aba0)A^2 = \begin{pmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{pmatrix} \times \begin{pmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{pmatrix}

Carrying out the matrix multiplication:

A2=((c2+b2)000(a2+c2)000(a2+b2))=(a2+b2+c2)IA^2 = \begin{pmatrix} (c^2 + b^2) & 0 & 0 \\ 0 & (a^2 + c^2) & 0 \\ 0 & 0 & (a^2 + b^2) \end{pmatrix} = (a^2 + b^2 + c^2) I where II is the identity matrix.

Step 2: Calculate A3A^3

Now, compute A3=A×A2A^3 = A \times A^2:

A3=A×(a2+b2+c2)I=(a2+b2+c2)AA^3 = A \times (a^2 + b^2 + c^2) I = (a^2 + b^2 + c^2) A

Thus, A3=(a2+b2+c2)AA^3 = (a^2 + b^2 + c^2) A.

Step 3: Compute A3A(a2+b2+c2)A^3 - A(a^2 + b^2 + c^2)

Now, subtract A(a2+b2+c2)A(a^2 + b^2 + c^2) from A3A^3:

A3A(a2+b2+c2)=(a2+b2+c2)AA(a2+b2+c2)A^3 - A(a^2 + b^2 + c^2) = (a^2 + b^2 + c^2) A - A(a^2 + b^2 + c^2)

Since both terms are the same, we get:

A3A(a2+b2+c2)=0A^3 - A(a^2 + b^2 + c^2) = 0

Final Answer:

A3A(a2+b2+c2)=0A^3 - A(a^2 + b^2 + c^2) = 0

Would you like more details or have any questions?

Here are five related questions:

  1. What is the significance of the matrix AA in vector cross products?
  2. How can we generalize this result for other matrices?
  3. What role does the identity matrix play in this solution?
  4. Can you explain how eigenvalues would behave for matrix AA?
  5. What are some physical interpretations of matrix AA in physics?

Tip: When multiplying matrices, check for symmetries and patterns; it often simplifies the calculation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Algebra
Linear Algebra
Matrix Multiplication

Formulas

Matrix multiplication formula: (A × B)_ij = Σ_k A_ik B_kj
A^2 = (a² + b² + c²) I, where I is the identity matrix
A³ = (a² + b² + c²) A

Theorems

Properties of skew-symmetric matrices
Matrix exponentiation
Identity matrix properties

Suitable Grade Level

Undergraduate (University Level Mathematics)