Math Problem Statement

If A = [[2, -1], [4, 2]] and B = [[2, 3], [1, 2]], compute A - B and A + B.

Solution

We are given two matrices AA and BB as follows:

A=[2142],B=[2312]A = \begin{bmatrix} 2 & -1 \\ 4 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}

We need to compute ABA - B and A+BA + B.

1. Matrix subtraction ABA - B:

AB=[2142][2312]A - B = \begin{bmatrix} 2 & -1 \\ 4 & 2 \end{bmatrix} - \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} Subtracting corresponding elements: AB=[22134122]=[0430]A - B = \begin{bmatrix} 2 - 2 & -1 - 3 \\ 4 - 1 & 2 - 2 \end{bmatrix} = \begin{bmatrix} 0 & -4 \\ 3 & 0 \end{bmatrix}

2. Matrix addition A+BA + B:

A+B=[2142]+[2312]A + B = \begin{bmatrix} 2 & -1 \\ 4 & 2 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} Adding corresponding elements: A+B=[2+21+34+12+2]=[4254]A + B = \begin{bmatrix} 2 + 2 & -1 + 3 \\ 4 + 1 & 2 + 2 \end{bmatrix} = \begin{bmatrix} 4 & 2 \\ 5 & 4 \end{bmatrix}

Final Results:

AB=[0430],A+B=[4254]A - B = \begin{bmatrix} 0 & -4 \\ 3 & 0 \end{bmatrix}, \quad A + B = \begin{bmatrix} 4 & 2 \\ 5 & 4 \end{bmatrix}

Would you like further details or clarifications?

Related Questions:

  1. How do you multiply two matrices together?
  2. What is the determinant of matrix AA or BB?
  3. How do you calculate the inverse of a 2x2 matrix?
  4. What are the eigenvalues of matrix AA or BB?
  5. How is matrix addition and subtraction used in solving linear systems?

Tip:

When adding or subtracting matrices, make sure they are of the same dimensions; otherwise, the operation is not defined.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Addition
Matrix Subtraction
Linear Algebra

Formulas

Matrix Addition: (A + B)_{ij} = A_{ij} + B_{ij}
Matrix Subtraction: (A - B)_{ij} = A_{ij} - B_{ij}

Theorems

-

Suitable Grade Level

Grades 9-12