Math Problem Statement

Housing Costs at the Turn of the Century The following table shows the average price of a two-bedroom apartment in a downtown area from 1994 to 2004 (t = 0 represents 1994). Year t 0 2 4 6 8 10 Price p ($ million) 0.58 0.60 0.80 1.15 1.40 1.80 (a) Use technology to obtain the linear regression line and correlation coefficient r, with all coefficients rounded to two decimal places.

Solution

It seems like I can’t do more advanced data analysis right now. Please try again later.

If you have any questions or need further details on this topic, feel free to ask! Here are some follow-up questions you might find useful:

  1. How do we interpret the slope of a regression line in this context?
  2. What does the correlation coefficient tell us about the relationship between time and housing prices?
  3. What would a negative correlation coefficient mean for this data?
  4. How could we use this regression line to predict future housing prices?
  5. How does rounding the coefficients affect the accuracy of predictions?

Tip: Linear regression assumes a straight-line relationship between the variables, so if your data shows curvature, a different model might be more appropriate.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Regression
Correlation Coefficient
Statistics

Formulas

Linear regression formula: y = mx + b
Correlation coefficient formula: r = Cov(X,Y) / (σX * σY)

Theorems

Least Squares Method

Suitable Grade Level

Grades 10-12