Math Problem Statement

h(x)=10x

Solution

The given function is:

h(x)=10xh(x) = 10x

This is a linear function, where h(x)h(x) is the dependent variable, xx is the independent variable, and the coefficient 10 represents the slope of the line. The slope of 10 means that for every unit increase in xx, the value of h(x)h(x) increases by 10.

If you want to evaluate this function for specific values of xx, you would substitute the xx-value into the function. For example:

  • h(1)=10(1)=10h(1) = 10(1) = 10
  • h(2)=10(2)=20h(2) = 10(2) = 20
  • h(0)=10(0)=0h(0) = 10(0) = 0

Would you like to explore this function further or solve some related questions?

Here are 5 related questions for practice:

  1. What is h(x)h(x) when x=5x = -5?
  2. What is the slope and y-intercept of the function h(x)=10xh(x) = 10x?
  3. How would you graph the function h(x)=10xh(x) = 10x?
  4. Solve for xx when h(x)=50h(x) = 50.
  5. What is the domain and range of the function h(x)=10xh(x) = 10x?

Tip: A linear function can always be written in the form y=mx+by = mx + b, where mm is the slope and bb is the y-intercept.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Functions
Slope-Intercept Form

Formulas

h(x) = mx + b (Slope-Intercept Form)
h(x) = 10x

Theorems

Slope Formula
Linear Function Properties

Suitable Grade Level

Grades 6-8