Math Problem Statement

Write an equation of the line that passes through (1, 5) and is parallel to the line y = -4x + 2.

Solution

To solve this problem:

We need to write the equation of a line that:

  1. Passes through the point (1,5)(1, 5).
  2. Is parallel to the line y=4x+2y = -4x + 2.

Step 1: Recall the slope of parallel lines

Parallel lines have the same slope. From the equation y=4x+2y = -4x + 2, the slope (mm) is 4-4.

Step 2: Use the point-slope form

The point-slope form of a line is: yy1=m(xx1)y - y_1 = m(x - x_1) Here, (x1,y1)(x_1, y_1) is the given point (1,5)(1, 5), and m=4m = -4.

Substitute the values: y5=4(x1)y - 5 = -4(x - 1)

Step 3: Simplify the equation

Distribute 4-4: y5=4x+4y - 5 = -4x + 4

Add 5 to both sides: y=4x+9y = -4x + 9

Final Answer:

The equation of the required line is: y=4x+9y = -4x + 9

Would you like further details or clarifications?


Here are 5 related questions to deepen your understanding:

  1. How do you determine the slope of a line from its equation?
  2. What would the equation be if the line passed through a different point, like (2,7)(2, 7)?
  3. How do you find the equation of a line perpendicular to a given line?
  4. What is the geometric significance of parallel lines having the same slope?
  5. How do you convert between slope-intercept form and point-slope form?

Tip:

Always check if the given point satisfies your final equation to ensure correctness!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Equations
Parallel Lines
Point-Slope Form

Formulas

Point-slope form: y - y1 = m(x - x1)
Slope-intercept form: y = mx + b

Theorems

Parallel Lines Theorem (lines with the same slope are parallel)

Suitable Grade Level

Grades 8-10