Math Problem Statement

1. \lim_{x \to 2} \frac{1 - \frac{2}{x}}{x^2 - x - 2}, 2. \lim_{x \to 0} \frac{4 - 2x + x^2}{2 + x^2}, 3. \lim_{x \to 0} \frac{1 - \cos(2x)}{x \tan(x)}, 4. Determine the derivatives of: a. Cot(x), b. Cos(x)tan^2(x), c. cotan^2(x), d. sec^2(x), e. \sqrt{x - x\sin^2(x)}.

Solution

Let's go over the questions one by one:

1. limx212xx2x2\lim_{x \to 2} \frac{1 - \frac{2}{x}}{x^2 - x - 2}

First, we factor the denominator: x2x2=(x2)(x+1)x^2 - x - 2 = (x - 2)(x + 1)

Next, simplify the numerator: 12x=x2x1 - \frac{2}{x} = \frac{x - 2}{x}

Thus, the expression becomes: limx2x2x(x2)(x+1)\lim_{x \to 2} \frac{\frac{x - 2}{x}}{(x - 2)(x + 1)} Canceling (x2)(x - 2) from numerator and denominator: limx21x(x+1)\lim_{x \to 2} \frac{1}{x(x + 1)} Substituting x=2x = 2: 12(2+1)=16\frac{1}{2(2 + 1)} = \frac{1}{6} Answer: 16\frac{1}{6}

2. limx042x+x22+x2\lim_{x \to 0} \frac{4 - 2x + x^2}{2 + x^2}

Substitute x=0x = 0 directly: 42(0)+(0)22+(0)2=42=2\frac{4 - 2(0) + (0)^2}{2 + (0)^2} = \frac{4}{2} = 2 Answer: 22

3. limx01cos(2x)xtan(x)\lim_{x \to 0} \frac{1 - \cos(2x)}{x \tan(x)}

First, recall that cos(2x)12x2\cos(2x) \approx 1 - 2x^2 for small xx, and tan(x)x\tan(x) \approx x for small xx.

This simplifies the expression to: 1(12x2)xx=2x2x2=2\frac{1 - (1 - 2x^2)}{x \cdot x} = \frac{2x^2}{x^2} = 2 Answer: 22

4. Derivatives

a. cot(x)\text{cot}(x)

The derivative of cot(x)\text{cot}(x) is: ddx[cot(x)]=csc2(x)\frac{d}{dx}[\text{cot}(x)] = -\csc^2(x)

b. cos(x)tan2(x)\cos(x) \tan^2(x)

Use the product rule: [ \frac{d}{dx} [\cos(x) \tan^2(x)] = \frac{d}{dx} [\cos(x)] \cdot \tan^2(x) + \cos(x) \cdot \frac{d}{dx} [\tan^2(x)] ] =sin(x)tan2(x)+cos(x)2tan(x)sec2(x)= -\sin(x) \cdot \tan^2(x) + \cos(x) \cdot 2\tan(x) \sec^2(x)

c. cot2(x)\cot^2(x)

Using the chain rule: [ \frac{d}{dx} [\cot^2(x)] = 2\cot(x) \cdot \frac{d}{dx} [\cot(x)] = 2\cot(x)(-\csc^2(x)) = -2\cot(x)\csc^2(x) ]

d. sec2(x)\sec^2(x)

The derivative of sec2(x)\sec^2(x) is: ddx[sec2(x)]=2sec(x)sec(x)tan(x)=2sec2(x)tan(x)\frac{d}{dx}[\sec^2(x)] = 2\sec(x) \cdot \sec(x) \tan(x) = 2\sec^2(x) \tan(x)

e. xxsin2(x)\sqrt{x - x\sin^2(x)}

Use the chain rule and simplify: ddx(xxsin2(x))=12xxsin2(x)(1(sin2(x)+2xsin(x)cos(x)))\frac{d}{dx} \left( \sqrt{x - x \sin^2(x)} \right) = \frac{1}{2\sqrt{x - x \sin^2(x)}} \cdot \left( 1 - (\sin^2(x) + 2x\sin(x)\cos(x)) \right) This requires further simplification, but the general form follows the chain rule.

Would you like any further details or explanations?

Follow-up questions:

  1. How does the limit of 1cos(2x)xtan(x)\frac{1 - \cos(2x)}{x\tan(x)} change with different trigonometric approximations?
  2. Could you expand on how the chain rule applies to cot2(x)\cot^2(x)?
  3. Why is it necessary to use the product rule for cos(x)tan2(x)\cos(x)\tan^2(x)?
  4. What happens if the denominator in the first limit cannot be factored?
  5. How do small-angle approximations help in solving limits like in question 3?

Tip: Always check for factorization or small-angle approximations when handling limits with trigonometric expressions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Derivatives
Trigonometric Functions
Small-angle Approximations
Chain Rule

Formulas

\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)} (L'Hopital's Rule)
Derivative of \text{cot}(x) = -\csc^2(x)
Derivative of \text{sec}^2(x) = 2\sec(x)\tan(x)
Small-angle approximations: \cos(2x) \approx 1 - 2x^2, \tan(x) \approx x for small x

Theorems

L'Hopital's Rule
Product Rule
Chain Rule

Suitable Grade Level

Grades 11-12, Early College