Math Problem Statement

Find the limit problems 39 to 48.

Solution

Let's go over these limit problems one by one.

39. limx0sin3xx\lim_{x \to 0} \frac{\sin 3x}{x}

Using the known limit property limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1, we can rewrite: limx0sin3xx=3limx0sin3x3x=31=3\lim_{x \to 0} \frac{\sin 3x}{x} = 3 \lim_{x \to 0} \frac{\sin 3x}{3x} = 3 \cdot 1 = 3 Answer: 3

40. limx0sin4xsin6x\lim_{x \to 0} \frac{\sin 4x}{\sin 6x}

We can apply the small angle approximation for limits involving sine: limx0sin4xsin6x=limx04x6x=46=23\lim_{x \to 0} \frac{\sin 4x}{\sin 6x} = \lim_{x \to 0} \frac{4x}{6x} = \frac{4}{6} = \frac{2}{3} Answer: 23\frac{2}{3}

41. limθ0tan6θsin2θ\lim_{\theta \to 0} \frac{\tan 6\theta}{\sin 2\theta}

Using the approximation limθ0tanθθ=1\lim_{\theta \to 0} \frac{\tan \theta}{\theta} = 1 and limθ0sinθθ=1\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1, we have: limθ0tan6θsin2θ=62=3\lim_{\theta \to 0} \frac{\tan 6\theta}{\sin 2\theta} = \frac{6}{2} = 3 Answer: 3

42. limθ0cosθ1sinθ\lim_{\theta \to 0} \frac{\cos \theta - 1}{\sin \theta}

This is a standard limit, which can be found using L'Hôpital's Rule (as it's of the form 00\frac{0}{0}): limθ0cosθ1sinθ=limθ0sinθcosθ=0\lim_{\theta \to 0} \frac{\cos \theta - 1}{\sin \theta} = \lim_{\theta \to 0} \frac{-\sin \theta}{\cos \theta} = 0 Answer: 0

43. limθ0sin(cosθ)secθ\lim_{\theta \to 0} \frac{\sin(\cos \theta)}{\sec \theta}

For small θ\theta, cosθ1\cos \theta \approx 1, so: limθ0sin(cosθ)secθ=sin11=sin1\lim_{\theta \to 0} \frac{\sin(\cos \theta)}{\sec \theta} = \frac{\sin 1}{1} = \sin 1 Answer: sin1\sin 1

44. limt0sin23tt2\lim_{t \to 0} \frac{\sin^2 3t}{t^2}

This can be rewritten as: limt0sin23tt2=limt0(sin3tt)2=9\lim_{t \to 0} \frac{\sin^2 3t}{t^2} = \lim_{t \to 0} \left( \frac{\sin 3t}{t} \right)^2 = 9 Answer: 9

45. limθ0sinθθ+tanθ\lim_{\theta \to 0} \frac{\sin \theta}{\theta + \tan \theta}

For small θ\theta, both sinθθ\sin \theta \approx \theta and tanθθ\tan \theta \approx \theta: limθ0sinθθ+tanθ=limθ0θ2θ=12\lim_{\theta \to 0} \frac{\sin \theta}{\theta + \tan \theta} = \lim_{\theta \to 0} \frac{\theta}{2\theta} = \frac{1}{2} Answer: 12\frac{1}{2}

46. limx0sin(x2)x\lim_{x \to 0} \frac{\sin(x^2)}{x}

Since sin(x2)x2\sin(x^2) \approx x^2 for small xx: limx0sin(x2)x=limx0x2x=limx0x=0\lim_{x \to 0} \frac{\sin(x^2)}{x} = \lim_{x \to 0} \frac{x^2}{x} = \lim_{x \to 0} x = 0 Answer: 0

47. limxπ/41tanxsinxcosx\lim_{x \to \pi/4} \frac{1 - \tan x}{\sin x - \cos x}

At x=π4x = \frac{\pi}{4}, both tanπ4=1\tan \frac{\pi}{4} = 1, sinπ4=cosπ4=22\sin \frac{\pi}{4} = \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}, so: limxπ/4112222=00\lim_{x \to \pi/4} \frac{1 - 1}{\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}} = \frac{0}{0} This suggests applying L'Hôpital's Rule. After differentiation: limxπ/4sec2xcosx+sinx=22=2\lim_{x \to \pi/4} \frac{-\sec^2 x}{\cos x + \sin x} = \frac{-2}{\sqrt{2}} = -\sqrt{2} Answer: 2-\sqrt{2}

48. limx1sin(x1)x2+x2\lim_{x \to 1} \frac{\sin(x - 1)}{x^2 + x - 2}

Factor the denominator: x2+x2=(x1)(x+2)x^2 + x - 2 = (x - 1)(x + 2), so: limx1sin(x1)(x1)(x+2)=limx11x+2=13\lim_{x \to 1} \frac{\sin(x - 1)}{(x - 1)(x + 2)} = \lim_{x \to 1} \frac{1}{x + 2} = \frac{1}{3} Answer: 13\frac{1}{3}


Would you like further clarification or more details on any of these? Here are 5 related questions to consider:

  1. How do you apply L'Hôpital's Rule in more complex limits?
  2. What are the common approximations used for trigonometric functions near zero?
  3. How does the chain rule affect limit computations involving compositions of functions?
  4. What are the best strategies to factor complex polynomials in limit problems?
  5. How does Taylor expansion help in solving trigonometric limits?

Tip: Always check if the limit is an indeterminate form (like 00\frac{0}{0}) before using advanced techniques like L'Hôpital's Rule.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Trigonometric Functions
Indeterminate Forms
L'Hôpital's Rule

Formulas

lim (x -> 0) (sin x / x) = 1
lim (theta -> 0) (tan theta / theta) = 1
lim (theta -> 0) (cos(theta) - 1) / sin(theta)
L'Hôpital's Rule: lim (x -> a) f(x) / g(x) = lim (x -> a) f'(x) / g'(x)

Theorems

L'Hôpital's Rule
Small Angle Approximation

Suitable Grade Level

College Calculus