To solve the limit
lim x → 0 1 − cos x sin 2 x \lim_{{x \to 0}} \frac{1 - \sqrt{\cos x}}{\sin^2 x} lim x → 0 s i n 2 x 1 − c o s x
we’ll start by simplifying the expression.
Step 1: Rewrite 1 − cos x 1 - \sqrt{\cos x} 1 − cos x
Notice that as x → 0 x \to 0 x → 0 , cos x → 1 \cos x \to 1 cos x → 1 , so cos x → 1 \sqrt{\cos x} \to 1 cos x → 1 . To handle the indeterminate form in the numerator, let’s multiply both the numerator and the denominator by the conjugate of the numerator, 1 + cos x 1 + \sqrt{\cos x} 1 + cos x :
1 − cos x sin 2 x ⋅ 1 + cos x 1 + cos x = ( 1 − cos x ) ( 1 + cos x ) sin 2 x ( 1 + cos x ) \frac{1 - \sqrt{\cos x}}{\sin^2 x} \cdot \frac{1 + \sqrt{\cos x}}{1 + \sqrt{\cos x}} = \frac{(1 - \sqrt{\cos x})(1 + \sqrt{\cos x})}{\sin^2 x (1 + \sqrt{\cos x})} s i n 2 x 1 − c o s x ⋅ 1 + c o s x 1 + c o s x = s i n 2 x ( 1 + c o s x ) ( 1 − c o s x ) ( 1 + c o s x )
Step 2: Simplify the expression
Using the difference of squares formula, the numerator becomes:
( 1 − cos x ) ( 1 + cos x ) = 1 − ( cos x ) = 1 − cos x (1 - \sqrt{\cos x})(1 + \sqrt{\cos x}) = 1 - (\cos x) = 1 - \cos x ( 1 − cos x ) ( 1 + cos x ) = 1 − ( cos x ) = 1 − cos x
Thus, the limit becomes:
lim x → 0 1 − cos x sin 2 x ( 1 + cos x ) \lim_{{x \to 0}} \frac{1 - \cos x}{\sin^2 x (1 + \sqrt{\cos x})} lim x → 0 s i n 2 x ( 1 + c o s x ) 1 − c o s x
Step 3: Simplify 1 − cos x 1 - \cos x 1 − cos x using a trigonometric identity
Recall the identity:
1 − cos x = 2 sin 2 ( x 2 ) 1 - \cos x = 2 \sin^2 \left(\frac{x}{2}\right) 1 − cos x = 2 sin 2 ( 2 x )
Substitute this into the expression:
lim x → 0 2 sin 2 ( x 2 ) sin 2 x ( 1 + cos x ) \lim_{{x \to 0}} \frac{2 \sin^2 \left(\frac{x}{2}\right)}{\sin^2 x (1 + \sqrt{\cos x})} lim x → 0 s i n 2 x ( 1 + c o s x ) 2 s i n 2 ( 2 x )
Step 4: Rewrite sin 2 x \sin^2 x sin 2 x in terms of sin ( x 2 ) \sin \left(\frac{x}{2}\right) sin ( 2 x )
Since sin x = 2 sin ( x 2 ) cos ( x 2 ) \sin x = 2 \sin \left(\frac{x}{2}\right) \cos \left(\frac{x}{2}\right) sin x = 2 sin ( 2 x ) cos ( 2 x ) , we have:
sin 2 x = 4 sin 2 ( x 2 ) cos 2 ( x 2 ) \sin^2 x = 4 \sin^2 \left(\frac{x}{2}\right) \cos^2 \left(\frac{x}{2}\right) sin 2 x = 4 sin 2 ( 2 x ) cos 2 ( 2 x )
Substitute this into the limit:
lim x → 0 2 sin 2 ( x 2 ) 4 sin 2 ( x 2 ) cos 2 ( x 2 ) ( 1 + cos x ) \lim_{{x \to 0}} \frac{2 \sin^2 \left(\frac{x}{2}\right)}{4 \sin^2 \left(\frac{x}{2}\right) \cos^2 \left(\frac{x}{2}\right) (1 + \sqrt{\cos x})} lim x → 0 4 s i n 2 ( 2 x ) c o s 2 ( 2 x ) ( 1 + c o s x ) 2 s i n 2 ( 2 x )
Step 5: Cancel sin 2 ( x 2 ) \sin^2 \left(\frac{x}{2}\right) sin 2 ( 2 x ) terms
Cancel out sin 2 ( x 2 ) \sin^2 \left(\frac{x}{2}\right) sin 2 ( 2 x ) from the numerator and denominator:
lim x → 0 2 4 cos 2 ( x 2 ) ( 1 + cos x ) = lim x → 0 1 2 cos 2 ( x 2 ) ( 1 + cos x ) \lim_{{x \to 0}} \frac{2}{4 \cos^2 \left(\frac{x}{2}\right) (1 + \sqrt{\cos x})} = \lim_{{x \to 0}} \frac{1}{2 \cos^2 \left(\frac{x}{2}\right) (1 + \sqrt{\cos x})} lim x → 0 4 c o s 2 ( 2 x ) ( 1 + c o s x ) 2 = lim x → 0 2 c o s 2 ( 2 x ) ( 1 + c o s x ) 1
Step 6: Evaluate the limit as x → 0 x \to 0 x → 0
As x → 0 x \to 0 x → 0 , cos ( x 2 ) → 1 \cos \left(\frac{x}{2}\right) \to 1 cos ( 2 x ) → 1 and cos x → 1 \sqrt{\cos x} \to 1 cos x → 1 , so:
1 2 ⋅ 1 ⋅ ( 1 + 1 ) = 1 2 ⋅ 2 = 1 4 \frac{1}{2 \cdot 1 \cdot (1 + 1)} = \frac{1}{2 \cdot 2} = \frac{1}{4} 2 ⋅ 1 ⋅ ( 1 + 1 ) 1 = 2 ⋅ 2 1 = 4 1
Final Answer:
lim x → 0 1 − cos x sin 2 x = 1 4 \lim_{{x \to 0}} \frac{1 - \sqrt{\cos x}}{\sin^2 x} = \frac{1}{4} lim x → 0 s i n 2 x 1 − c o s x = 4 1
Would you like further details or have any questions?
Related Questions
How can the conjugate method help in solving other limits?
What are other ways to handle indeterminate forms in limits?
How do trigonometric identities simplify limit problems?
What is the significance of the small-angle approximation in trigonometric limits?
Can this approach be applied to limits involving other trigonometric functions?
Tip
When dealing with limits that produce indeterminate forms, try substituting identities or using conjugates to simplify the expressions.