Math Problem Statement

lim (x -> 0) (1 - sqrt(cos(x))) / sin^2(x) = ?

Solution

To solve the limit

limx01cosxsin2x\lim_{{x \to 0}} \frac{1 - \sqrt{\cos x}}{\sin^2 x}

we’ll start by simplifying the expression.

Step 1: Rewrite 1cosx1 - \sqrt{\cos x}

Notice that as x0x \to 0, cosx1\cos x \to 1, so cosx1\sqrt{\cos x} \to 1. To handle the indeterminate form in the numerator, let’s multiply both the numerator and the denominator by the conjugate of the numerator, 1+cosx1 + \sqrt{\cos x}:

1cosxsin2x1+cosx1+cosx=(1cosx)(1+cosx)sin2x(1+cosx)\frac{1 - \sqrt{\cos x}}{\sin^2 x} \cdot \frac{1 + \sqrt{\cos x}}{1 + \sqrt{\cos x}} = \frac{(1 - \sqrt{\cos x})(1 + \sqrt{\cos x})}{\sin^2 x (1 + \sqrt{\cos x})}

Step 2: Simplify the expression

Using the difference of squares formula, the numerator becomes:

(1cosx)(1+cosx)=1(cosx)=1cosx(1 - \sqrt{\cos x})(1 + \sqrt{\cos x}) = 1 - (\cos x) = 1 - \cos x

Thus, the limit becomes:

limx01cosxsin2x(1+cosx)\lim_{{x \to 0}} \frac{1 - \cos x}{\sin^2 x (1 + \sqrt{\cos x})}

Step 3: Simplify 1cosx1 - \cos x using a trigonometric identity

Recall the identity:

1cosx=2sin2(x2)1 - \cos x = 2 \sin^2 \left(\frac{x}{2}\right)

Substitute this into the expression:

limx02sin2(x2)sin2x(1+cosx)\lim_{{x \to 0}} \frac{2 \sin^2 \left(\frac{x}{2}\right)}{\sin^2 x (1 + \sqrt{\cos x})}

Step 4: Rewrite sin2x\sin^2 x in terms of sin(x2)\sin \left(\frac{x}{2}\right)

Since sinx=2sin(x2)cos(x2)\sin x = 2 \sin \left(\frac{x}{2}\right) \cos \left(\frac{x}{2}\right), we have:

sin2x=4sin2(x2)cos2(x2)\sin^2 x = 4 \sin^2 \left(\frac{x}{2}\right) \cos^2 \left(\frac{x}{2}\right)

Substitute this into the limit:

limx02sin2(x2)4sin2(x2)cos2(x2)(1+cosx)\lim_{{x \to 0}} \frac{2 \sin^2 \left(\frac{x}{2}\right)}{4 \sin^2 \left(\frac{x}{2}\right) \cos^2 \left(\frac{x}{2}\right) (1 + \sqrt{\cos x})}

Step 5: Cancel sin2(x2)\sin^2 \left(\frac{x}{2}\right) terms

Cancel out sin2(x2)\sin^2 \left(\frac{x}{2}\right) from the numerator and denominator:

limx024cos2(x2)(1+cosx)=limx012cos2(x2)(1+cosx)\lim_{{x \to 0}} \frac{2}{4 \cos^2 \left(\frac{x}{2}\right) (1 + \sqrt{\cos x})} = \lim_{{x \to 0}} \frac{1}{2 \cos^2 \left(\frac{x}{2}\right) (1 + \sqrt{\cos x})}

Step 6: Evaluate the limit as x0x \to 0

As x0x \to 0, cos(x2)1\cos \left(\frac{x}{2}\right) \to 1 and cosx1\sqrt{\cos x} \to 1, so:

121(1+1)=122=14\frac{1}{2 \cdot 1 \cdot (1 + 1)} = \frac{1}{2 \cdot 2} = \frac{1}{4}

Final Answer:

limx01cosxsin2x=14\lim_{{x \to 0}} \frac{1 - \sqrt{\cos x}}{\sin^2 x} = \frac{1}{4}

Would you like further details or have any questions?

Related Questions

  1. How can the conjugate method help in solving other limits?
  2. What are other ways to handle indeterminate forms in limits?
  3. How do trigonometric identities simplify limit problems?
  4. What is the significance of the small-angle approximation in trigonometric limits?
  5. Can this approach be applied to limits involving other trigonometric functions?

Tip

When dealing with limits that produce indeterminate forms, try substituting identities or using conjugates to simplify the expressions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Limits
Trigonometric Limits
Indeterminate Forms

Formulas

lim (x -> 0) (1 - cos(x)) / sin^2(x) = 1/2
Trigonometric identity: 1 - cos(x) = 2 * sin^2(x/2)

Theorems

L'Hopital's Rule
Trigonometric Limits

Suitable Grade Level

Grade 12 / College-Level Calculus