Math Problem Statement

Evaluate the limit lim_{x→0} |sin(x)| / √(1 - cos(x)).

Solution

This mathematical problem involves evaluating the limit:

limx0sinx1cosx.\lim_{x \to 0} \frac{\sin x}{\sqrt{1 - \cos x}}.

Let me guide you through the solution.

Step 1: Simplify the denominator

Recall the trigonometric identity: 1cosx=2sin2(x2).1 - \cos x = 2\sin^2\left(\frac{x}{2}\right). Substituting this into the denominator, we have: 1cosx=2sin2(x2)=2sin(x2).\sqrt{1 - \cos x} = \sqrt{2\sin^2\left(\frac{x}{2}\right)} = \sqrt{2} \cdot \left|\sin\left(\frac{x}{2}\right)\right|.

Step 2: Rewrite the limit

The limit now becomes: limx0sinx2sin(x2).\lim_{x \to 0} \frac{\sin x}{\sqrt{2} \cdot \left|\sin\left(\frac{x}{2}\right)\right|}.

Step 3: Handle the absolute value

For x0x \to 0, sin(x2)0\sin\left(\frac{x}{2}\right) \to 0 and is positive. Thus, sin(x2)=sin(x2)\left|\sin\left(\frac{x}{2}\right)\right| = \sin\left(\frac{x}{2}\right). The limit simplifies to: [ \lim_{x \to 0} \frac{\sin x}{\sqrt{2} \cdot \sin\left(\frac{x}{2

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric Limits
Absolute Values
Trigonometric Identities

Formulas

1 - cos(x) = 2sin^2(x/2)
lim_{x→0} sin(x)/x = 1

Theorems

Trigonometric Limit Theorem
Simplification using Identities

Suitable Grade Level

Grades 11-12