Math Problem Statement

solve using trigonometric identities

Solve the limit as x approaches π/4 of (cos(2x)/(sin(x) - cos(x)) + tan(x) + 1).

Solution

To solve the given limit using trigonometric identities, the expression is:

limxπ4(cos(2x)sin(x)cos(x)+tan(x)+1)\lim_{{x \to \frac{\pi}{4}}} \left( \frac{\cos(2x)}{\sin(x) - \cos(x)} + \tan(x) + 1 \right)

Let's break this down step by step using trigonometric identities.

Step 1: Trigonometric identities

  1. Double-angle identity for cosine: cos(2x)=cos2(x)sin2(x)\cos(2x) = \cos^2(x) - \sin^2(x)
  2. Simplify the term tan(x)\tan(x): tan(x)=sin(x)cos(x)\tan(x) = \frac{\sin(x)}{\cos(x)}

Step 2: Substitute cos(2x)\cos(2x) and simplify

The expression becomes:

limxπ4(cos2(x)sin2(x)sin(x)cos(x)+sin(x)cos(x)+1)\lim_{{x \to \frac{\pi}{4}}} \left( \frac{\cos^2(x) - \sin^2(x)}{\sin(x) - \cos(x)} + \frac{\sin(x)}{\cos(x)} + 1 \right)

Step 3: Evaluate at x=π4x = \frac{\pi}{4}

At x=π4x = \frac{\pi}{4}, the values of the basic trigonometric functions are:

  • sin(π4)=22\sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}
  • cos(π4)=22\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}

Substitute these values into the limit expression:

  1. Cosine double angle at π4\frac{\pi}{4}: cos(2x)=cos(π2)=0\cos(2x) = \cos\left(\frac{\pi}{2}\right) = 0 So the first term becomes: cos2(π4)sin2(π4)sin(π4)cos(π4)=00\frac{\cos^2\left(\frac{\pi}{4}\right) - \sin^2\left(\frac{\pi}{4}\right)}{\sin\left(\frac{\pi}{4}\right) - \cos\left(\frac{\pi}{4}\right)} = \frac{0}{0} This is an indeterminate form, which suggests we need to simplify further.

Step 4: Apply L'Hopital's Rule

Since the first term gives an indeterminate form 00\frac{0}{0}, we apply L'Hopital's Rule by differentiating the numerator and denominator:

  • Derivative of the numerator cos(2x)\cos(2x): ddx[cos(2x)]=2sin(2x)\frac{d}{dx}[\cos(2x)] = -2\sin(2x)
  • Derivative of the denominator sin(x)cos(x)\sin(x) - \cos(x): ddx[sin(x)cos(x)]=cos(x)+sin(x)\frac{d}{dx}[\sin(x) - \cos(x)] = \cos(x) + \sin(x)

So the limit of the first term becomes:

limxπ42sin(2x)cos(x)+sin(x)\lim_{{x \to \frac{\pi}{4}}} \frac{-2\sin(2x)}{\cos(x) + \sin(x)}

At x=π4x = \frac{\pi}{4}:

  • (\sin\left(\frac{\pi}{2

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Trigonometry
Indeterminate Forms
L'Hopital's Rule

Formulas

cos(2x) = cos^2(x) - sin^2(x)
tan(x) = sin(x) / cos(x)
L'Hopital's Rule: lim(f(x)/g(x)) = lim(f'(x)/g'(x)) when 0/0 or ∞/∞

Theorems

L'Hopital's Rule
Trigonometric Identities

Suitable Grade Level

Grades 11-12