Math Problem Statement

Calculate the limit \(\lim_{x \to \frac{\pi}{4}} \left[ (\tan x - 1) \sec(2x) \right]\).

Solution

The problem involves calculating the limit of limxπ4[(tanx1)sec(2x)]\lim_{x \to \frac{\pi}{4}} \left[ (\tan x - 1) \sec(2x) \right]. Let’s analyze and solve this step by step.


Step 1: Analyze the expression

We aim to compute: limxπ4[(tanx1)sec(2x)]\lim_{x \to \frac{\pi}{4}} \left[ (\tan x - 1) \sec(2x) \right]

At x=π4x = \frac{\pi}{4}:

  • tan(π4)=1\tan\left(\frac{\pi}{4}\right) = 1, so (tanx1)0(\tan x - 1) \to 0,
  • sec(2x)=sec(π2)\sec(2x) = \sec\left(\frac{\pi}{2}\right), which diverges (sec(π2)=\sec(\frac{\pi}{2}) = \infty).

This creates an indeterminate form 00 \cdot \infty. To resolve this, we rewrite the expression.


Step 2: Rewrite the expression

We rewrite sec(2x)\sec(2x) as 1cos(2x)\frac{1}{\cos(2x)}, giving: (tanx1)sec(2x)=tanx1cos(2x)(\tan x - 1) \sec(2x) = \frac{\tan x - 1}{\cos(2x)}

Now, analyze the new form:

  • As xπ4x \to \frac{\pi}{4}, tanx10\tan x - 1 \to 0,
  • cos(2x)cos(π2)=0\cos(2x) \to \cos\left(\frac{\pi}{2}\right) = 0.

This creates an indeterminate form 00\frac{0}{0}, which can be resolved using L'Hôpital's Rule.


Step 3: Apply L’Hôpital’s Rule

Using L'Hôpital’s Rule, differentiate the numerator and denominator:

  • Numerator: ddx(tanx1)=sec2x\frac{d}{dx}(\tan x - 1) = \sec^2 x,
  • Denominator: ddx(cos(2x))=2sin(2x)\frac{d}{dx}(\cos(2x)) = -2\sin(2x).

Thus, the limit becomes: limxπ4tanx1cos(2x)=limxπ4sec2x2sin(2x)\lim_{x \to \frac{\pi}{4}} \frac{\tan x - 1}{\cos(2x)} = \lim_{x \to \frac{\pi}{4}} \frac{\sec^2 x}{-2\sin(2x)}


Step 4: Simplify and substitute

At x=π4x = \frac{\pi}{4}:

  • sec2(π4)=(1cos(π4))2=(2)2=2\sec^2\left(\frac{\pi}{4}\right) = \left(\frac{1}{\cos\left(\frac{\pi}{4}\right)}\right)^2 = \left(\sqrt{2}\right)^2 = 2,
  • sin(2x)=sin(π2)=1\sin(2x) = \sin\left(\frac{\pi}{2}\right) = 1.

Substitute these values into the expression: limxπ4sec2x2sin(2x)=221=1.\lim_{x \to \frac{\pi}{4}} \frac{\sec^2 x}{-2\sin(2x)} = \frac{2}{-2 \cdot 1} = -1.


Final Answer:

1\boxed{-1}


Would you like further clarification on any step or additional examples? Here are 5 related questions you might explore:

  1. How do you identify indeterminate forms like 00 \cdot \infty or 00\frac{0}{0}?
  2. How does L'Hôpital's Rule work for different forms like 00\frac{0}{0} or \frac{\infty}{\infty}?
  3. Can limits involving trigonometric functions always be simplified using rewriting techniques?
  4. What are the key trigonometric identities that help in solving such limits?
  5. How can graphing functions provide insight into their limits?

Tip: Always verify the indeterminate form before applying L'Hôpital’s Rule to avoid unnecessary computation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Indeterminate Forms
Trigonometric Functions

Formulas

\(\sec(2x) = \frac{1}{\cos(2x)}\)
L'Hôpital's Rule: \(\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}\) if \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\).

Theorems

L'Hôpital's Rule

Suitable Grade Level

Grades 11-12 or college-level calculus