Math Problem Statement

lim s> -1 (2-akar(s²+3)) / (1-s²)

Solution

We need to evaluate the limit of the following expression as ss approaches 1-1:

lims12s2+31s2\lim_{s \to -1} \frac{2 - \sqrt{s^2 + 3}}{1 - s^2}

Step 1: Substitute s=1s = -1

Substitute s=1s = -1 directly into the expression:

2(1)2+31(1)2=21+311=240=220=00\frac{2 - \sqrt{(-1)^2 + 3}}{1 - (-1)^2} = \frac{2 - \sqrt{1 + 3}}{1 - 1} = \frac{2 - \sqrt{4}}{0} = \frac{2 - 2}{0} = \frac{0}{0}

This gives us an indeterminate form 00\frac{0}{0}, so we can apply L'Hôpital's Rule to find the limit.

Step 2: Apply L'Hôpital's Rule

L'Hôpital's Rule states that if a limit results in the indeterminate form 00\frac{0}{0}, we can differentiate the numerator and the denominator separately and then evaluate the limit.

Differentiate the numerator:

dds(2s2+3)=012s2+32s=ss2+3\frac{d}{ds} \left( 2 - \sqrt{s^2 + 3} \right) = 0 - \frac{1}{2\sqrt{s^2 + 3}} \cdot 2s = -\frac{s}{\sqrt{s^2 + 3}}

Differentiate the denominator:

dds(1s2)=2s\frac{d}{ds} \left( 1 - s^2 \right) = -2s

Now, the limit becomes: lims1ss2+32s=lims1ss2+32s\lim_{s \to -1} \frac{-\frac{s}{\sqrt{s^2 + 3}}}{-2s} = \lim_{s \to -1} \frac{\frac{s}{\sqrt{s^2 + 3}}}{2s}

Step 3: Simplify and Evaluate the Limit

Cancel the ss terms (note s0s \neq 0 in this case):

lims112s2+3=12(1)2+3=124=12×2=14\lim_{s \to -1} \frac{1}{2\sqrt{s^2 + 3}} = \frac{1}{2\sqrt{(-1)^2 + 3}} = \frac{1}{2\sqrt{4}} = \frac{1}{2 \times 2} = \frac{1}{4}

Thus, the limit is:

14\boxed{\frac{1}{4}}


Would you like more details or have any further questions?

Related questions:

  1. How does L'Hôpital's Rule work for other indeterminate forms like \frac{\infty}{\infty}?
  2. What are other methods to evaluate limits apart from L'Hôpital's Rule?
  3. Can L'Hôpital’s Rule be applied if both numerator and denominator are not differentiable?
  4. What is the significance of the indeterminate form 00\frac{0}{0}?
  5. How can we simplify limits involving square roots without using L'Hôpital's Rule?

Tip: When using L'Hôpital’s Rule, always verify that you have an indeterminate form like 00\frac{0}{0} or \frac{\infty}{\infty} before differentiating.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Indeterminate Forms
L'Hôpital's Rule
Differentiation

Formulas

L'Hôpital's Rule: lim f(x)/g(x) = lim f'(x)/g'(x) (for indeterminate forms 0/0 or ∞/∞)
Derivative of sqrt(x): d/dx(sqrt(x)) = 1/(2sqrt(x))
Limit Definition: lim s -> a f(s)

Theorems

L'Hôpital's Rule

Suitable Grade Level

Grades 11-12, Calculus I