Math Problem Statement

limx0(2cosx)1sin2x\lim_{x\rarr0}\left(2-\cos x\right)^{\frac{1}{\sin^2x}}

Solution

To evaluate the limit

limx0(2cosx)1sin2x\lim_{x \to 0} \left(2 - \cos x\right)^{\frac{1}{\sin^2 x}}

we can start by rewriting the expression in a form that allows us to use logarithmic properties to simplify the calculation.

Step 1: Take the Logarithm

Let y=(2cosx)1sin2x.y = \left(2 - \cos x\right)^{\frac{1}{\sin^2 x}}. Then lny=1sin2xln(2cosx).\ln y = \frac{1}{\sin^2 x} \ln (2 - \cos x).

Now, we need to find the limit of lny\ln y as x0x \to 0: limx0lny=limx0ln(2cosx)sin2x.\lim_{x \to 0} \ln y = \lim_{x \to 0} \frac{\ln (2 - \cos x)}{\sin^2 x}.

Step 2: Expand 2cosx2 - \cos x around x=0x = 0

Using the Taylor expansion of cosx\cos x around x=0x = 0, we have cosx=1x22+O(x4).\cos x = 1 - \frac{x^2}{2} + O(x^4). Therefore, 2cosx=2(1x22)=1+x22+O(x4).2 - \cos x = 2 - \left(1 - \frac{x^2}{2}\right) = 1 + \frac{x^2}{2} + O(x^4).

Thus, as x0x \to 0, ln(2cosx)ln(1+x22).\ln (2 - \cos x) \approx \ln \left(1 + \frac{x^2}{2}\right).

Using the approximation ln(1+u)u\ln (1 + u) \approx u for u0u \to 0, ln(2cosx)x22.\ln (2 - \cos x) \approx \frac{x^2}{2}.

Step 3: Substitute into the Limit

Now we have limx0ln(2cosx)sin2xlimx0x22sin2x.\lim_{x \to 0} \frac{\ln (2 - \cos x)}{\sin^2 x} \approx \lim_{x \to 0} \frac{\frac{x^2}{2}}{\sin^2 x}.

Using the small-angle approximation sinxx\sin x \approx x as x0x \to 0, we get sin2xx2\sin^2 x \approx x^2. Substituting this in, we find limx0x22x2=12.\lim_{x \to 0} \frac{\frac{x^2}{2}}{x^2} = \frac{1}{2}.

Step 4: Exponentiate to Find yy

Since limx0lny=12\lim_{x \to 0} \ln y = \frac{1}{2}, we have limx0y=e12=e.\lim_{x \to 0} y = e^{\frac{1}{2}} = \sqrt{e}.

Final Answer

limx0(2cosx)1sin2x=e.\lim_{x \to 0} \left(2 - \cos x\right)^{\frac{1}{\sin^2 x}} = \sqrt{e}.

Would you like further explanation or have questions on any part?

Here are some related questions that may interest you:

  1. How do we use Taylor series to approximate limits?
  2. What other functions have similar behavior near zero?
  3. Why does sinxx\sin x \approx x work in limits?
  4. Can this approach be used for other trigonometric limits?
  5. What are other common logarithmic limit techniques?

Tip: When taking limits, using approximations like Taylor series or small-angle identities often simplifies complex expressions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Logarithmic Functions
Taylor Series
Trigonometric Functions

Formulas

\lim_{x \to 0} \left(2 - \cos x\right)^{\frac{1}{\sin^2 x}}
\ln(1 + u) \approx u

Theorems

Taylor Expansion
Small-Angle Approximation

Suitable Grade Level

Grades 11-12 / College-level Calculus