Math Problem Statement

Evaluate the limit lim_{x→0+} (cos(4x))^(1/x^2).

Solution

We are tasked with evaluating the following limit:

limx0+(cos(4x))1x2.\lim_{x \to 0^+} \left(\cos(4x)\right)^{\frac{1}{x^2}}.

Step-by-step Solution:

  1. Rewrite the expression using the logarithm: To simplify the computation, we take the natural logarithm: y=(cos(4x))1x2    lny=1x2lncos(4x).y = \left(\cos(4x)\right)^{\frac{1}{x^2}} \implies \ln y = \frac{1}{x^2} \ln \cos(4x).

    The limit now becomes: lny=limx0+lncos(4x)x2.\ln y = \lim_{x \to 0^+} \frac{\ln \cos(4x)}{x^2}.

  2. Expand lncos(4x)\ln \cos(4x) using a Taylor series: For small xx, cos(4x)1(4x)22=18x2\cos(4x) \approx 1 - \frac{(4x)^2}{2} = 1 - 8x^2. Thus: lncos(4x)ln(18x2).\ln \cos(4x) \approx \ln\left(1 - 8x^2\right).

    Using the approximation ln(1u)u\ln(1 - u) \approx -u for small uu, we have: lncos(4x)8x2.\ln \cos(4x) \approx -8x^2.

  3. Substitute back into the limit: Replace lncos(4x)\ln \cos(4x) with 8x2-8x^2 in the limit: lny=limx0+8x2x2.\ln y = \lim_{x \to 0^+} \frac{-8x^2}{x^2}.

    Simplify: lny=limx0+8=8.\ln y = \lim_{x \to 0^+} -8 = -8.

  4. Exponentiate to find yy: Recall that y=elnyy = e^{\ln y}. Thus: y=e8.y = e^{-8}.

Final Answer:

limx0+(cos(4x))1x2=e8.\lim_{x \to 0^+} \left(\cos(4x)\right)^{\frac{1}{x^2}} = e^{-8}.

Let me know if you'd like further clarification or details! Here are 5 related questions to explore:

  1. How does the Taylor expansion simplify limits involving trigonometric functions?
  2. What is the significance of the natural logarithm in solving exponential limits?
  3. How can this method be generalized to evaluate similar limits with sin(x)\sin(x) or tan(x)\tan(x)?
  4. Why does ln(1u)u\ln(1 - u) \approx -u hold for small uu?
  5. What are the key conditions for applying this logarithmic transformation to a limit?

Tip: Always verify the convergence of the function inside the logarithm when using logarithmic transformations

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Exponential functions
Logarithmic transformation
Taylor expansion

Formulas

ln y = lim_{x→0+} (ln(cos(4x)) / x^2)
ln(1 - u) ≈ -u for small u

Theorems

Taylor series expansion
Properties of logarithms
Exponential and logarithmic relationships

Suitable Grade Level

Grades 11-12