Math Problem Statement

Evaluate \( \lim_{x \to 0} (\cos x)^{\frac{1}{\sin^2 x}} \).

Solution

We are solving the problem:

limx0(cosx)1sin2x.\lim_{x \to 0} (\cos x)^{\frac{1}{\sin^2 x}}.

Step-by-Step Solution:

  1. Rewrite the Expression Using Logarithms
    Let y=(cosx)1sin2xy = (\cos x)^{\frac{1}{\sin^2 x}}.
    Taking the natural logarithm on both sides: lny=1sin2xln(cosx).\ln y = \frac{1}{\sin^2 x} \ln(\cos x).

  2. Simplify the Exponent
    The goal is to evaluate lny\ln y as x0x \to 0. Since lny=ln(cosx)sin2x\ln y = \frac{\ln(\cos x)}{\sin^2 x}, we focus on the limit: limx0ln(cosx)sin2x.\lim_{x \to 0} \frac{\ln(\cos x)}{\sin^2 x}.

  3. Expand ln(cosx)\ln(\cos x) for Small xx
    Using the approximation cosx1x22\cos x \approx 1 - \frac{x^2}{2} for small xx, we get: ln(cosx)ln(1x22).\ln(\cos x) \approx \ln\left(1 - \frac{x^2}{2}\right). For small xx, ln(1u)u\ln(1 - u) \approx -u, so: ln(cosx)x22.\ln(\cos x) \approx -\frac{x^2}{2}.

  4. Substitute Back into the Limit
    Substitute ln(cosx)x22\ln(\cos x) \approx -\frac{x^2}{2} into the limit: limx0ln(cosx)sin2xlimx0x22sin2x.\lim_{x \to 0} \frac{\ln(\cos x)}{\sin^2 x} \approx \lim_{x \to 0} \frac{-\frac{x^2}{2}}{\sin^2 x}. Using the approximation sinxx\sin x \approx x for small xx, we have sin2xx2\sin^2 x \approx x^2. Thus: limx0x22sin2xlimx0x22x2=12.\lim_{x \to 0} \frac{-\frac{x^2}{2}}{\sin^2 x} \approx \lim_{x \to 0} \frac{-\frac{x^2}{2}}{x^2} = -\frac{1}{2}.

  5. Interpret the Result
    Since lny12\ln y \to -\frac{1}{2}, we have: y=elnye12=1e.y = e^{\ln y} \to e^{-\frac{1}{2}} = \frac{1}{\sqrt{e}}.

Final Answer:

1e (Option B)\boxed{\frac{1}{\sqrt{e}} \text{ (Option B)}}


Would you like further details or have questions? Here are five related questions to expand on this concept:

  1. What are the key approximations used for small values of xx in trigonometric and logarithmic functions?
  2. How does the substitution ln(cosx)x22\ln(\cos x) \approx -\frac{x^2}{2} simplify the problem?
  3. Can you explain why sinxx\sin x \approx x is valid for small xx?
  4. How would the solution differ if the power were 1/sinx1/\sin x instead of 1/sin2x1/\sin^2 x?
  5. How can L’Hôpital’s Rule be used to solve limits like this one?

Tip: For problems involving small xx, always expand functions into their Taylor series to simplify the analysis.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Logarithmic functions
Trigonometric approximations
Exponential functions

Formulas

\( \ln(1 + u) \approx u \text{ for small } u \)
\( \sin x \approx x \text{ for small } x \)
\( \cos x \approx 1 - \frac{x^2}{2} \text{ for small } x \)

Theorems

Taylor series expansions
L'Hôpital's Rule

Suitable Grade Level

Undergraduate calculus or advanced high school calculus