Math Problem Statement

. Find the Limits of the following functions: i. 𝑦 = 𝑓(π‘₯) = π‘₯ 2sin( 1 π‘₯2 ) π‘π‘œπ‘ π‘₯ as π‘₯ β†’ 0. ii. limπ‘₯β†’0 8π‘₯ 3βˆ’27 4π‘₯ 2+6π‘₯+9 iii. limπ‘₯β†’2 √1+√2+π‘₯βˆ’βˆš3 π‘₯βˆ’2 iv. limπ‘₯β†’0 π‘‘π‘Žπ‘›π‘₯ 𝑠𝑖𝑛π‘₯ v. limπ‘₯β†’0 |π‘₯|, where |π‘₯| = { π‘₯ 𝑖𝑓 π‘₯ β‰₯ 0 βˆ’π‘₯ 𝑖𝑓 π‘₯ < 0

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Trigonometric Limits
Squeeze Theorem
L'Hopital's Rule
Continuity

Formulas

lim_{x β†’ 0} x^2 sin(1/x^2) cos(x) = 0
lim_{x β†’ 0} (8x^3 - 27)/(4x^2 + 6x + 9) = -3
lim_{x β†’ 2} (√(1+√(2+x)) - √3)/(x-2) = 1/(8√3)
lim_{x β†’ 0} tan(x)/sin(x) = 1
lim_{x β†’ 0} |x| = 0

Theorems

Squeeze Theorem
L'Hopital's Rule
Trigonometric Identities

Suitable Grade Level

Grades 11-12