Math Problem Statement

Calculate the limit: lim (x → 0) [(tan x - x) / (x - sin x)].

Solution

The given mathematical expression is:

limx0tanxxxsinx.\lim_{x \to 0} \frac{\tan x - x}{x - \sin x}.

To solve this limit, we proceed step-by-step:


Step 1: Expand tanx\tan x and sinx\sin x using Taylor series.

For small xx, the Taylor expansions are: tanx=x+x33+O(x5),\tan x = x + \frac{x^3}{3} + O(x^5), sinx=xx36+O(x5).\sin x = x - \frac{x^3}{6} + O(x^5).

Substitute these into the numerator and denominator:

Numerator: tanxx=(x+x33)x=x33+O(x5).\tan x - x = \left(x + \frac{x^3}{3}\right) - x = \frac{x^3}{3} + O(x^5).

Denominator: [

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Taylor Expansion
Calculus

Formulas

Taylor series expansion for tan(x): tan(x) = x + x^3/3 + O(x^5)
Taylor series expansion for sin(x): sin(x) = x - x^3/6 + O(x^5)

Theorems

L'Hôpital's Rule
Taylor Series Expansion

Suitable Grade Level

Undergraduate (Calculus Level)