Math Problem Statement

Find the limit: lim_{x→∞} arctan((1 - √3x)/(3 + x))

Solution

The problem is to find the limit of the given expression as xx \to \infty:

limxtan1(13x3+x)\lim_{{x \to \infty}} \tan^{-1} \left( \frac{1 - \sqrt{3}x}{3 + x} \right)

Step-by-step Solution:

  1. Simplify the Expression Inside the Arctan Function:

    Consider the fraction:

    13x3+x\frac{1 - \sqrt{3}x}{3 + x}

    As xx \to \infty, the terms involving xx will dominate over the constant terms. Thus, we can divide both the numerator and the denominator by xx:

    13xx3+xx=1x33x+1\frac{\frac{1 - \sqrt{3}x}{x}}{\frac{3 + x}{x}} = \frac{\frac{1}{x} - \sqrt{3}}{\frac{3}{x} + 1}

  2. Evaluate the Limit as xx \to \infty:

    As xx \to \infty, 1x0\frac{1}{x} \to 0 and 3x0\frac{3}{x} \to 0. Thus, the expression simplifies to:

    030+1=3\frac{0 - \sqrt{3}}{0 + 1} = -\sqrt{3}

    So, the expression inside the arctan function converges to 3-\sqrt{3}.

  3. Apply the Arctan Function and Find the Limit:

    Now, we need to compute:

    limxtan1(3)\lim_{{x \to \infty}} \tan^{-1}(-\sqrt{3})

    Since tan1(3)\tan^{-1}(-\sqrt{3}) is a constant, the limit is simply this constant. We know that:

    tan1(3)=π3\tan^{-1}(-\sqrt{3}) = -\frac{\pi}{3}

  4. Conclusion:

    Therefore, the limit is:

    limxtan1(13x3+x)=π3\lim_{{x \to \infty}} \tan^{-1} \left( \frac{1 - \sqrt{3}x}{3 + x} \right) = -\frac{\pi}{3}

Final Answer:

π3\boxed{-\frac{\pi}{3}}

Would you like more details on any step or have any questions?

Related Questions:

  1. What is the limit of limxtan1(13x3+x)\lim_{x \to -\infty} \tan^{-1} \left( \frac{1 - \sqrt{3}x}{3 + x} \right)?
  2. How can we find the limit of limxarcsin(13x3+x)\lim_{x \to \infty} \arcsin \left( \frac{1 - \sqrt{3}x}{3 + x} \right)?
  3. What is the limit of limx0tan1(13x3+x)\lim_{x \to 0} \tan^{-1} \left( \frac{1 - \sqrt{3}x}{3 + x} \right)?
  4. Can you find the limit limx13x3+x\lim_{x \to \infty} \frac{1 - \sqrt{3}x}{3 + x} without using the arctan function?
  5. What is the behavior of the function f(x)=tan1(13x3+x)f(x) = \tan^{-1} \left( \frac{1 - \sqrt{3}x}{3 + x} \right) as xx \to \infty?

Tip:

Remember that the limit of an inverse trigonometric function often involves recognizing standard values like tan1(±1)\tan^{-1}(\pm 1) or tan1(±3)\tan^{-1}(\pm \sqrt{3}).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Trigonometric Functions
Arctan Function

Formulas

lim_{x→∞} (1 - √3x)/(3 + x) = -√3
tan⁻¹(-√3) = -π/3

Theorems

Limits at Infinity
Inverse Trigonometric Functions

Suitable Grade Level

Grades 11-12, University Level