Math Problem Statement

Обчислити за правилом Лопатія

Обчислити за правилом Лопатія

Solution

To calculate the given limit using L'Hôpital's Rule, we analyze it step by step. The given limit is:

limx0arcsin(2x)2arcsin(x)x3.\lim_{x \to 0} \frac{\arcsin(2x) - 2\arcsin(x)}{x^3}.

Step 1: Check indeterminate form

As x0x \to 0,

  • arcsin(2x)arcsin(0)=0\arcsin(2x) \to \arcsin(0) = 0,
  • arcsin(x)arcsin(0)=0\arcsin(x) \to \arcsin(0) = 0.

So, the numerator becomes 00=00 - 0 = 0 and the denominator is x30x^3 \to 0. Hence, the limit is in the indeterminate form 0/00/0, and we can apply L'Hôpital's Rule.

Step 2: Apply L'Hôpital's Rule

Take the derivative of the numerator and denominator:

  • Numerator: Derivative of arcsin(2x)\arcsin(2x) is ddx[arcsin(2x)]=21(2x)2\frac{d}{dx}[\arcsin(2x)] = \frac{2}{\sqrt{1-(2x)^2}}, and derivative of 2arcsin(x)-2\arcsin(x) is 21x2-\frac{2}{\sqrt{1-x^2}}. So, the derivative of the numerator is: 21(2x)221x2.\frac{2}{\sqrt{1-(2x)^2}} - \frac{2}{\sqrt{1-x^2}}.

  • Denominator: Derivative of x3x^3 is 3x23x^2.

Thus, the limit becomes: limx021(2x)221x23x2.\lim_{x \to 0} \frac{\frac{2}{\sqrt{1-(2x)^2}} - \frac{2}{\sqrt{1-x^2}}}{3x^2}.

Step 3: Simplify and reapply L'Hôpital's Rule

At x=0x = 0, the numerator is still 00 and the denominator is 00. We apply L'Hôpital's Rule again.

Derivative of the numerator:

Using the chain rule, compute the derivatives of: ddx(21(2x)2)=2(4x)(1(2x)2)3/2\frac{d}{dx}\left(\frac{2}{\sqrt{1-(2x)^2}}\right) = \frac{2 \cdot (4x)}{(1-(2x)^2)^{3/2}} and ddx(21x2)=2x(1x2)3/2.\frac{d}{dx}\left(-\frac{2}{\sqrt{1-x^2}}\right) = \frac{2 \cdot x}{(1-x^2)^{3/2}}.

So, the derivative of the numerator is: 8x(1(2x)2)3/22x(1x2)3/2.\frac{8x}{(1-(2x)^2)^{3/2}} - \frac{2x}{(1-x^2)^{3/2}}.

Derivative of the denominator:

ddx[3x2]=6x.\frac{d}{dx}[3x^2] = 6x.

The new limit becomes: limx08x(1(2x)2)3/22x(1x2)3/26x.\lim_{x \to 0} \frac{\frac{8x}{(1-(2x)^2)^{3/2}} - \frac{2x}{(1-x^2)^{3/2}}}{6x}.

Step 4: Simplify further

Factor xx out of the numerator and cancel with the xx in the denominator: limx08(1(2x)2)3/22(1x2)3/26.\lim_{x \to 0} \frac{\frac{8}{(1-(2x)^2)^{3/2}} - \frac{2}{(1-x^2)^{3/2}}}{6}.

As x0x \to 0, both 1(2x)21-(2x)^2 and 1x21-x^2 approach 11, so: 8(1(2x)2)3/28,2(1x2)3/22.\frac{8}{(1-(2x)^2)^{3/2}} \to 8, \quad \frac{2}{(1-x^2)^{3/2}} \to 2.

Thus, the numerator becomes: 82=6.8 - 2 = 6.

The denominator is 66. Therefore, the limit is: 66=1.\frac{6}{6} = 1.

Final Answer:

1\boxed{1}

Would you like a deeper explanation of any step or related examples?


Related Questions:

  1. What are the conditions for applying L'Hôpital's Rule?
  2. How do trigonometric limits like arcsin(x)\arcsin(x) behave near zero?
  3. Can this problem be solved without L'Hôpital’s Rule?
  4. What other indeterminate forms are suitable for L'Hôpital's Rule?
  5. How does the chain rule affect derivatives of composite functions like arcsin(2x)\arcsin(2x)?

Tip: Always verify the indeterminate form before applying L'Hôpital's Rule.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Limits
Indeterminate Forms

Formulas

L'Hôpital's Rule: lim (x→a) f(x)/g(x) = lim (x→a) f'(x)/g'(x) if indeterminate form 0/0 or ∞/∞
Derivative of arcsin(x): d/dx[arcsin(x)] = 1 / sqrt(1 - x^2)

Theorems

L'Hôpital's Rule
Chain Rule

Suitable Grade Level

College or Advanced High School