Math Problem Statement

Answer a b c or d

Which relationship represents a function with a lesser slope than the function represented by the given table?

Solution

To solve this problem, let's proceed step by step:

  1. Determine the slope of the given linear function from the table: Using two points from the table (4,2)(-4, 2) and (0,3)(0, -3), the slope mm is calculated as: m=y2y1x2x1=320(4)=54.m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - 2}{0 - (-4)} = \frac{-5}{4}. Thus, the slope of the given function is 54-\frac{5}{4}.

  2. Compare the slopes of the options:

    • Option A: y=x+3y = x + 3, slope m=1m = 1. (Greater than 54-\frac{5}{4}.)
    • Option B: From the graph, the slope appears steeper than 54-\frac{5}{4}. (Greater than 54-\frac{5}{4}.)
    • Option C: y=54x3y = -\frac{5}{4}x - 3, slope m=54m = -\frac{5}{4}. (Equal to the given slope.)
    • Option D: From the graph, the slope is less steep, closer to m=12m = -\frac{1}{2}. (Lesser than 54-\frac{5}{4}.)
  3. Conclusion: The relationship with a lesser slope than the given function is Option D.

If you have further questions or need more details, feel free to ask.

Here are some follow-up questions for further exploration:

  1. How is slope defined in linear functions, and why is it important?
  2. Could you explain why a steeper graph has a greater absolute slope?
  3. How does the slope affect the appearance of a graph?
  4. What are the practical applications of comparing slopes in real-life scenarios?
  5. How can you confirm a slope using multiple points from a table or graph?

Tip: When analyzing slopes, always compare the steepness and direction (positive or negative) of the lines.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Functions
Slope
Graph Analysis

Formulas

Slope formula: m = (y2 - y1) / (x2 - x1)

Theorems

-

Suitable Grade Level

Grades 8-10