Math Problem Statement

Which of the following tables represents a linear function?

x 1 1 1 1 1 y −3 −2 −1 0 1

x −4 −2 0 2 4 y 4 2 0 2 4

x −5 −3 −1 1 3 y negative one half 1 2 7 over 2 5

x −6 −4 −2 0 2 y 5 13 over 3 11 over 3 3 7 over 3

Solution

To determine which table represents a linear function, we need to check if the change in yy is consistent for equal changes in xx. A function y=mx+by = mx + b is linear if the differences between consecutive yy values divided by the differences between the corresponding xx values (i.e., the slope) are constant.

Let's analyze each table:

Table 1

xx 1 1 1 1 1
yy −3 −2 −1 0 1

  • The xx values are all the same, so we cannot determine a slope. This is not a function.

Table 2

xx −4 −2 0 2 4
yy 4 2 0 2 4

  • Calculate the slope between each pair of points: Slope between (4,4) and (2,2)=242(4)=22=1\text{Slope between } (−4, 4) \text{ and } (−2, 2) = \frac{2 - 4}{-2 - (-4)} = \frac{-2}{2} = -1 Slope between (2,2) and (0,0)=020(2)=22=1\text{Slope between } (−2, 2) \text{ and } (0, 0) = \frac{0 - 2}{0 - (-2)} = \frac{-2}{2} = -1 Slope between (0,0) and (2,2)=2020=22=1\text{Slope between } (0, 0) \text{ and } (2, 2) = \frac{2 - 0}{2 - 0} = \frac{2}{2} = 1 Slope between (2,2) and (4,4)=4242=22=1\text{Slope between } (2, 2) \text{ and } (4, 4) = \frac{4 - 2}{4 - 2} = \frac{2}{2} = 1

  • The slopes are not consistent, so this is not a linear function.

Table 3

xx −5 −3 −1 1 3
yy −1/2 1 2 7/2 5

  • Calculate the slope between each pair of points: Slope between (5,12) and (3,1)=1(12)3(5)=1+122=322=34\text{Slope between } (−5, -\frac{1}{2}) \text{ and } (−3, 1) = \frac{1 - (-\frac{1}{2})}{-3 - (-5)} = \frac{1 + \frac{1}{2}}{2} = \frac{\frac{3}{2}}{2} = \frac{3}{4} Slope between (3,1) and (1,2)=211(3)=12=12\text{Slope between } (−3, 1) \text{ and } (−1, 2) = \frac{2 - 1}{-1 - (-3)} = \frac{1}{2} = \frac{1}{2} Slope between (1,2) and (1,72)=7221(1)=72422=322=34\text{Slope between } (−1, 2) \text{ and } (1, \frac{7}{2}) = \frac{\frac{7}{2} - 2}{1 - (-1)} = \frac{\frac{7}{2} - \frac{4}{2}}{2} = \frac{\frac{3}{2}}{2} = \frac{3}{4} Slope between (1,72) and (3,5)=57231=102722=322=34\text{Slope between } (1, \frac{7}{2}) \text{ and } (3, 5) = \frac{5 - \frac{7}{2}}{3 - 1} = \frac{\frac{10}{2} - \frac{7}{2}}{2} = \frac{\frac{3}{2}}{2} = \frac{3}{4}

  • The slopes are consistent, so this is a linear function with slope 34\frac{3}{4}.

Table 4

xx −6 −4 −2 0 2
yy 5 133\frac{13}{3} 113\frac{11}{3} 3 73\frac{7}{3}

  • Calculate the slope between each pair of points: Slope between (6,5) and (4,133)=13354(6)=1331532=232=13\text{Slope between } (−6, 5) \text{ and } (−4, \frac{13}{3}) = \frac{\frac{13}{3} - 5}{-4 - (-6)} = \frac{\frac{13}{3} - \frac{15}{3}}{2} = \frac{\frac{-2}{3}}{2} = \frac{-1}{3} Slope between (4,133) and (2,113)=1131332(4)=232=13\text{Slope between } (−4, \frac{13}{3}) \text{ and } (−2, \frac{11}{3}) = \frac{\frac{11}{3} - \frac{13}{3}}{-2 - (-4)} = \frac{\frac{-2}{3}}{2} = \frac{-1}{3} Slope between (2,113) and (0,3)=31130(2)=931132=232=13\text{Slope between } (−2, \frac{11}{3}) \text{ and } (0, 3) = \frac{3 - \frac{11}{3}}{0 - (-2)} = \frac{\frac{9}{3} - \frac{11}{3}}{2} = \frac{\frac{-2}{3}}{2} = \frac{-1}{3} Slope between (0,3) and (2,73)=73320=73932=232=13\text{Slope between } (0, 3) \text{ and } (2, \frac{7}{3}) = \frac{\frac{7}{3} - 3}{2 - 0} = \frac{\frac{7}{3} - \frac{9}{3}}{2} = \frac{\frac{-2}{3}}{2} = \frac{-1}{3}

  • The slopes are consistent, so this is a linear function with slope 13\frac{-1}{3}.

Conclusion

The tables that represent a linear function are Table 3 and Table 4.

Would you like more details or have any questions?

Here are some questions you can ask next:

  1. How do you find the slope of a line given two points?
  2. Can you explain the properties of linear functions?
  3. What is the difference between a linear and a nonlinear function?
  4. How do you graph a linear equation?
  5. What is the significance of the y-intercept in a linear function?

Tip: To determine if a set of points forms a linear function, always check if the change in yy is proportional to the change in xx for all pairs of points.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Functions
Slope
Consistency in Slope

Formulas

-

Theorems

-

Suitable Grade Level

Grades 7-9