Math Problem Statement

Let

A =

1 2

3 4

5 6

and b =

7

8

9

.

Find the least squares solution of the system

(a) without calculating left inverse

(b) by calculating the left inverse

Solution

Given the system defined by:

A=[123456]andb=[789],A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix},

we want to find the least squares solution to Ax=bAx = b using two methods:

(a) Without Calculating the Left Inverse

To find the least squares solution without calculating the left inverse, we use the formula:

x=(ATA)1ATb.x = (A^T A)^{-1} A^T b.

Let's go through the steps:

  1. Calculate ATA^T: AT=[135246].A^T = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}.

  2. Calculate ATAA^T A: ATA=[135246][123456]=[35444456].A^T A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 35 & 44 \\ 44 & 56 \end{bmatrix}.

  3. Invert ATAA^T A: The inverse of ATAA^T A, (ATA)1(A^T A)^{-1}, can be computed as:

    (ATA)1=13556442[56444435].(A^T A)^{-1} = \frac{1}{35 \cdot 56 - 44^2} \begin{bmatrix} 56 & -44 \\ -44 & 35 \end{bmatrix}.

    Simplifying, we find:

    (ATA)1=1196[56444435]=[0.28570.22450.22450.1786].(A^T A)^{-1} = \frac{1}{196} \begin{bmatrix} 56 & -44 \\ -44 & 35 \end{bmatrix} = \begin{bmatrix} 0.2857 & -0.2245 \\ -0.2245 & 0.1786 \end{bmatrix}.

  4. Calculate ATbA^T b: ATb=[135246][789]=[76100].A^T b = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix} = \begin{bmatrix} 76 \\ 100 \end{bmatrix}.

  5. Find x=(ATA)1ATbx = (A^T A)^{-1} A^T b: x=[0.28570.22450.22450.1786][76100]=[12].x = \begin{bmatrix} 0.2857 & -0.2245 \\ -0.2245 & 0.1786 \end{bmatrix} \begin{bmatrix} 76 \\ 100 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.

So, the least squares solution is:

x=[12].x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.

(b) By Calculating the Left Inverse

For a matrix AA with more rows than columns (tall matrix), there isn’t a true left inverse. Instead, we use the pseudoinverse A=(ATA)1ATA^\dagger = (A^T A)^{-1} A^T. This is exactly the solution we calculated in part (a).

Thus, we have the same solution:

x=[12].x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.

Would you like further details or have any questions?


Here are five questions that extend this problem:

  1. How does the least squares solution change if we alter the vector bb?
  2. What does it mean geometrically to find a least squares solution for Ax=bAx = b?
  3. How can the least squares solution be interpreted in terms of projections?
  4. What conditions are necessary for ATAA^T A to be invertible?
  5. How would the least squares solution differ if AA were a square matrix?

Tip: When computing least squares solutions, always verify that ATAA^T A is invertible for the approach to work.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Least Squares Solution
Pseudoinverse

Formulas

Least squares solution formula: x = (A^T A)^(-1) A^T b
Transpose of a matrix: A^T
Inverse of a matrix: (A^T A)^(-1)

Theorems

Least Squares Approximation Theorem
Properties of Pseudoinverses

Suitable Grade Level

College Level