Math Problem Statement

Let

A =

1 2

3 4

5 6

and b =

7

8

9

.

Find the least squares solution of the system

(a) without calculating left inverse

(b) by calculating the left inverse

Solution

To find the least squares solution for the system Ax=bA \mathbf{x} = \mathbf{b}, where

A=[123456]andb=[789],A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix},

we will solve it in two ways:

(a) Without Calculating the Left Inverse

The least squares solution xls\mathbf{x}_{\text{ls}} can be found using the formula: xls=(ATA)1ATb.\mathbf{x}_{\text{ls}} = (A^T A)^{-1} A^T \mathbf{b}.

  1. Calculate ATA^T: AT=[135246].A^T = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}.

  2. Calculate ATAA^T A: ATA=[135246][123456]=[35444456].A^T A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 35 & 44 \\ 44 & 56 \end{bmatrix}.

  3. Invert ATAA^T A: (ATA)1=1(35)(56)(44)2[56444435]=[1.41.11.10.875].(A^T A)^{-1} = \frac{1}{(35)(56) - (44)^2} \begin{bmatrix} 56 & -44 \\ -44 & 35 \end{bmatrix} = \begin{bmatrix} 1.4 & -1.1 \\ -1.1 & 0.875 \end{bmatrix}.

  4. Calculate ATbA^T \mathbf{b}: ATb=[135246][789]=[76100].A^T \mathbf{b} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix} = \begin{bmatrix} 76 \\ 100 \end{bmatrix}.

  5. Calculate xls\mathbf{x}_{\text{ls}}: xls=(ATA)1ATb=[1.41.11.10.875][76100]=[35].\mathbf{x}_{\text{ls}} = (A^T A)^{-1} A^T \mathbf{b} = \begin{bmatrix} 1.4 & -1.1 \\ -1.1 & 0.875 \end{bmatrix} \begin{bmatrix} 76 \\ 100 \end{bmatrix} = \begin{bmatrix} -3 \\ 5 \end{bmatrix}.

Thus, the least squares solution is: xls=[35].\mathbf{x}_{\text{ls}} = \begin{bmatrix} -3 \\ 5 \end{bmatrix}.

(b) By Calculating the Left Inverse

Since AA is not a square matrix, it doesn’t have an ordinary inverse. However, the least squares solution method used in part (a) already effectively involves calculating the pseudoinverse of AA, so this method provides the solution without requiring any additional calculations.

If you have further questions or want a breakdown of any step, please let me know!


Related Questions:

  1. How would we calculate the least squares solution if AA were square and invertible?
  2. What is the geometric interpretation of a least squares solution in terms of projections?
  3. Can the least squares method be used to solve inconsistent systems? Why?
  4. What are the conditions under which (ATA)(A^T A) is invertible?
  5. How would the solution change if we modified the values in vector b\mathbf{b}?

Tip:

When working with least squares, remember that it finds the "best approximate" solution by minimizing the distance from AxA \mathbf{x} to b\mathbf{b}, which is useful for inconsistent systems.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Least Squares Method
Matrix Operations

Formulas

Least squares solution: x_ls = (A^T A)^{-1} A^T b
Matrix transpose: A^T
Matrix multiplication: A^T A and A^T b
Matrix inverse: (A^T A)^{-1)

Theorems

Least Squares Approximation
Properties of Pseudoinverse

Suitable Grade Level

Undergraduate (Grades 11-12 and college level)