Math Problem Statement

Find the Laplace transform of the piecewise function f(t), where f(t) = t/τ for 0 < t < τ and f(t) = 1 for t > τ.

Solution

The problem asks to find the Laplace transform of the given function f(t)f(t). Based on the visible content, the function f(t)f(t) is defined piecewise as follows:

  1. f(t)=t/τf(t) = t/\tau when 0<t<τ0 < t < \tau,
  2. f(t)=1f(t) = 1 when t>τt > \tau.

The Laplace transform is given by: L{f(t)}=0f(t)estdt\mathcal{L}\{f(t)\} = \int_0^\infty f(t) e^{-st} \, dt

Step 1: Split the integral based on the definition of f(t)f(t)

L{f(t)}=0τtτestdt+τestdt\mathcal{L}\{f(t)\} = \int_0^\tau \frac{t}{\tau} e^{-st} \, dt + \int_\tau^\infty e^{-st} \, dt


Step 2: Solve the first integral 0τtτestdt\int_0^\tau \frac{t}{\tau} e^{-st} \, dt

Let I1=0τtτestdtI_1 = \int_0^\tau \frac{t}{\tau} e^{-st} \, dt. Perform integration by parts, where:

  • Let u=tτu = \frac{t}{\tau} and dv=estdtdv = e^{-st} \, dt,
  • Then, du=1τdtdu = \frac{1}{\tau} \, dt and v=1sestv = \frac{-1}{s} e^{-st}.

Using the integration by parts formula udv=uvvdu\int u \, dv = uv - \int v \, du, we get: I1=[tτ1sest]0τ+0τ1τ1sestdtI_1 = \left[ \frac{t}{\tau} \cdot \frac{-1}{s} e^{-st} \right]_0^\tau + \int_0^\tau \frac{1}{\tau} \cdot \frac{1}{s} e^{-st} \, dt

Simplify the two terms:

  1. Evaluate [tτ1sest]0τ\left[ \frac{t}{\tau} \cdot \frac{-1}{s} e^{-st} \right]_0^\tau: =ττsesτ0=1sesτ.= \frac{-\tau}{\tau s} e^{-s\tau} - 0 = \frac{-1}{s} e^{-s\tau}.

  2. Solve 0τ1τsestdt\int_0^\tau \frac{1}{\tau s} e^{-st} \, dt: 0τestdt=[1sest]0τ=1sesτ+1s.\int_0^\tau e^{-st} \, dt = \left[ \frac{-1}{s} e^{-st} \right]_0^\tau = \frac{-1}{s} e^{-s\tau} + \frac{1}{s}.

Substitute these results back into I1I_1: I1=1sesτ+1s2τ(1esτ).I_1 = \frac{-1}{s} e^{-s\tau} + \frac{1}{s^2 \tau} \left( 1 - e^{-s\tau} \right).


Step 3: Solve the second integral τestdt\int_\tau^\infty e^{-st} \, dt

Let I2=τestdtI_2 = \int_\tau^\infty e^{-st} \, dt. This is a simple exponential integral: I2=[1sest]τ=01sesτ=1sesτ.I_2 = \left[ \frac{-1}{s} e^{-st} \right]_\tau^\infty = 0 - \frac{-1}{s} e^{-s\tau} = \frac{1}{s} e^{-s\tau}.


Step 4: Combine I1I_1 and I2I_2

The total Laplace transform is: L{f(t)}=I1+I2=(1sesτ+1s2τ(1esτ))+1sesτ.\mathcal{L}\{f(t)\} = I_1 + I_2 = \left( \frac{-1}{s} e^{-s\tau} + \frac{1}{s^2 \tau} \left( 1 - e^{-s\tau} \right) \right) + \frac{1}{s} e^{-s\tau}.

Simplify: L{f(t)}=1s2τ1s2τesτ+1sesτ.\mathcal{L}\{f(t)\} = \frac{1}{s^2 \tau} - \frac{1}{s^2 \tau} e^{-s\tau} + \frac{1}{s} e^{-s\tau}.

This is the Laplace transform of f(t)f(t).


Let me know if you need a deeper explanation or additional steps clarified.

Related Questions:

  1. What is the Laplace transform of a piecewise-defined function in general?
  2. How do you solve improper integrals involving exponential functions?
  3. Can you explain the properties of the Laplace transform for functions with a time shift?
  4. How is integration by parts used in solving Laplace transforms?
  5. What are practical applications of Laplace transforms in engineering?

Tip:

Always check the continuity of piecewise functions when finding their Laplace transform to ensure the integral limits are correctly applied.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Laplace Transform
Piecewise-defined Functions
Integration by Parts

Formulas

Laplace Transform: \( \mathcal{L}\{f(t)\} = \int_0^\infty f(t) e^{-st} dt \)
Integration by Parts: \( \int u dv = uv - \int v du \)

Theorems

Linearity of Laplace Transform
Exponential Decay Integration

Suitable Grade Level

Undergraduate (Engineering/Mathematics)