Math Problem Statement
Solve this equation
Solution
from sympy import symbols, expand, prod import numpy as np
Given data points
x_values = [1, 3, 5, 6] y_values = [18, -8, 30, 88]
Define the variable
x = symbols('x')
Function to calculate the Lagrange polynomial
def lagrange_interpolation(x_values, y_values, x): n = len(x_values) lagrange_poly = 0 for i in range(n): # Calculate each Lagrange basis polynomial basis_poly = prod([(x - x_values[j]) / (x_values[i] - x_values[j]) for j in range(n) if i != j]) lagrange_poly += y_values[i] * basis_poly return expand(lagrange_poly)
Calculate the Lagrange polynomial
lagrange_poly = lagrange_interpolation(x_values, y_values, x)
Find f(12)
f_12 = lagrange_poly.subs(x, 12)
lagrange_poly, f_12(x3 - x2 - 22x + 40, 1360)(x3 - x2 - 22x + 40, 1360)successThe
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Interpolation
Lagrange Polynomials
Polynomial Approximation
Formulas
Lagrange Polynomial Formula: L(x) = Σ (y_i * Π (x - x_j) / (x_i - x_j)) for i ≠ j
Theorems
Lagrange Interpolation Theorem
Suitable Grade Level
Grades 11-12 or Undergraduate Level
Related Recommendation
Lagrange Polynomial for Data Points and Calculating f(12)
Lagrange Interpolation for Given Data Points and Approximating at x = 0.2 and x = 0.6
Find Cubic Polynomial Using Lagrange's Interpolation Method
Lagrange Interpolation Polynomial for Given Points y(1), y(3), y(4), y(6)
Lagrange's Interpolation: Find f(8) for Given Data Points