Math Problem Statement
Menggunakan metode Lagrange, berapakah nilai minimum dari fungsi objektif f(x,y)=x+y dengan kendala x^2+y^2=8?
Your answer
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Optimization
Lagrange Multipliers
Constrained Optimization
Formulas
Lagrange function: \( \mathcal{L}(x, y, \lambda) = f(x, y) + \lambda g(x, y) \)
Partial derivatives: \( \frac{\partial \mathcal{L}}{\partial x}, \frac{\partial \mathcal{L}}{\partial y}, \frac{\partial \mathcal{L}}{\partial \lambda} \)
Constraint equation: \( x^2 + y^2 = 8 \)
Theorems
Lagrange Multiplier Theorem
Suitable Grade Level
Grades 11-12 (Senior High School) or College-level Calculus
Related Recommendation
Lagrange Multipliers: Minimizing x^2 + 3y^2 + 10 with Constraint 8 - x - y = 0
Optimization Using Lagrange Multipliers: Max and Min Values of f(x, y) = 2x + y
Optimization with Lagrange Multipliers: Minimizing 9x^2 + y^2 under a Cubic Constraint
Find Absolute Maximum and Minimum Using Lagrange Multipliers on a Circle Constraint
Find Minimum of f(x, y, z) = x^2 + y^2 + z^2 with Constraints Using Lagrange Multipliers